The Linux® Command Line

William E. Shotts, Jr.

A LinuxCommand.org Book

Copyright ©2008-2009, William E. Shotts, Jr.

This work is licensed under the Creative Commons Attribution-Noncommercial-No
Derivative Works 3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/us/ or send a letter to Creative

Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Linux® is the registered trademark of Linus Torvalds. All other trademarks belong to

their respective owners.

This book is part of the LinuxCommand.org project, a site for Linux education and
advocacy devoted to helping users of legacy operating systems migrate into the future.

You may contact the LinuxCommand.org project at http://linuxcommand.org.

Printed copies of this book, in large, easy-to-read-format, are available for
purchase from lulu.com. Orders may be placed at the following:

http://www.lulu.com/content/paperback-book/the-linux-command-line/7594184

Release History

Version
09.12
09.11

09.10

09.08

09.07

Date
December 14, 2009

November 19, 2009

October 3, 2009

August 12, 2009

July 18, 2009

Description
First Edition.

Fourth draft with almost all reviewer feedback
incorporated and edited through chapter 37.

Third draft with revised table formatting,
partial application of reviewers feedback and
edited through chapter 18.

Second draft incorporating the first editing
pass.

Completed first draft.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.lulu.com/content/paperback-book/the-linux-command-line/7594184
http://linuxcommand.org/

Table of Contents

Part 1 — INtrodUCLION.......ceeeuiiirireeiin e na s s r s nas e 1
B 1511 (o Yo 17 Tox 1 [o) o N 2
Why Use The CommaNd LINE?.........cueeeiiiiiciiieiiee e e e e e e e s e e e e e e e 2
What This BOOK 1S ADOUL........oiiiiiiiiie e e e e e e e e e 3
Who Should Read ThiS BOOK............cuuuiiiiiiiiiiii e 3
What's 1N THIS BOOK........coiiiiiiiiie it e e 4
HOW TO Read ThiS BOOK.......uiiiiiiiiii i e e e e e e e e e e 5
PrEIEQUISITES. ... ittt e e e e e e e e e e e e e e s e s e st r e e e e e aee e e e e s 5

Why | Don't Call It “GNU/LINUX"........eiiiiiiiiiiie et 5

F o g [0 10V (=0 [o g 0=) 6
Your Feedback 1S Needed!.........oo it 7
FUINEr REAGING.teiiiiiiii et e e 7
(@3] (o] o] g o] o T OO 7
Part 2 — Learning The Shell.........ccccccciiiimmmniiiimmminrssrr e 9
2 — WHAL IS TN@ SRNEII?....eeeeeeeeeeeiiisennnsnnssnsnssssssssssssssssssssssnssssssssssnssssssssnnnnnns 10
Terminal EMUIBLOTS.cooiiiiiii ittt e et e e e et e e s e abae e e e e s 10
YOUF FirSt KEYSITOKES. ... iiiiie ittt et eaeens 10
(0] 041 0 aF= T o I o 1S3 (] Y75 11
CUISON MOVEIMEINT. ...ttt e e e e et e e e e e e e s s anabb e e e e e e e eenben s 11

A Few Words About MiCe AN FOCUS.ccoiiiiiiiiiiiiii e 11

Try Some Simple COMMANGS........uuiiiiiiiieee e e e r e e e e e e e e e s rraeeeees 12
ENding A Terminal SESSION......ccoiiiiiiiiiiiieeee ettt e e e e e e e e e e e e e eeeaes 13
The Console Behind The CUrtain..........coocviiioiiiiiie e 13

FUNEr REAAING. ... ittt e et e e e et e e e s ennee e e e e e enne 13

B Sl 1= 177 [0 = 11 0. o N 14
Understanding The File SYStem Tre€.......cuueiiiiiiiiiee e 14
The Current WOorking DIF€CIOIY........ccoiiiiiciiiieieeee et e e e e e e e e e e e e 14
Listing The Contents Of A DIF€CIONY......uuuuiiiieeeeeii ittt e e e e e e e e s s esnveraae e e e e aeeennnn 15
Changing The Current Working Dir€CIOIY..........couuiiiiiiiiiiiieiiee et eeenes 16
ADSOIUtE PAthNAMES........cooiiiiiiii e 16
Relative PathNames...........cooiiiiiiii et 16
Some Helpful SNOMCULS.........oooiiiieeeee e e 18

Important Facts ADout FileNames.........c..uvviiiiiiiiii e 18

4 — EXPIOring TNE SYSTEM.......cccvsesssssmmmmnmsmmmmssssssssssnnsssssssssssssssssssssssssssssnnnnnns 20
MOFE FUN WIth IS...eeeeieiieee e e e e e e e e e e e e aaeaes 20
(@110 g IS AN To I AN o U] 0= o | £ 21

A Longer LOOK At LONG FOIMAL.........ccciiieiiiiiiiiiiiiiee e 22
Determining A File's Type With file..........cueiiiiiii e 23
Viewing File Contents WiIth 1€SS.......ccocciiiiiiiieecce e 24
WAL IS “TOXE 2.t e e e e e e e e e e e s e e a e e e e e aaeeas 24

LESS IS IMOME.... ettt ettt e e e e e e e e e e ennn 26

F L €10 To [=To I Ko T | PSPPSR 26
SYMDOKIC LINKS....eeiiiiiee e e e e e e e e s et reeeeaaaeeee s 29
[E= T I 01 PPN 30
FUMNEr REAGING. ... ittt e e e e e e e e e e s aebbbees 30
5 — Manipulating FileS ANd Dir€ClOII€S..........ccurssessssssmmmmmmsmmssssssssssssssssssssnnns 31
LAV [o (o= T (o F- PR PUP PR 31
(O T = Toa (] g =T g T 1= S 33
Wildcards Work In The GUI TOO........uuiiiiiiiiiie ettt 33
MKAir — Create DIFECIOMES.iiiiiiie ittt e e 34
CP — Copy FileS AN DIFECLOMIES.ciiiieee ettt e e e e e e e e 34
Useful Options ANd EXamMPIES........cooiiiiiiiiiiiiiiiie e 35
MV — Move ANd RENAME FlES.......cooiiiii e 36
Useful Options ANd EXamMPIES.........eeiiiiiiiiie it 36
rm — Remove Files ANd DIr€CIOMES.cuii ittt 37
Useful Options AnNd EXaMPIES.........ccocciiiiiiiiieicee e 37
Be Careful WIth IMl......o e 38

[N — CrEALE LINKS...cii ittt ettt et e et e e e e s it b e e e e e e nneeeae s 39
[F= 100 B I TSP PPPRPPPR 39
SYMDBDOIIC LINKS.....ceiiiiiiiieeeeeee e r e e e e e e e e e s s s e rereaeeeeeeeeas 40
Let's BUild A PlaygrOUNG............oiioiiiiiiie ittt e et e e enraee e e snenanee 40
(O == U oo DT (=T o1 (o] 1= 40
(0] o)V T o T 11U 41
Moving ANd ReNamMING FIlES........uuuiiiiiiiiiiiiieee e 42
Creating Hard LINKS..........coooiiiiie et e e e e e e e 43
Creating SYMDBOIIC LINKS........uuiiiiiiiiee e 44
Removing Files ANd Dir€CLOMES.cc.uuuiiiiiiiiiee e e e e e 45
Creating Symlinks With The GUIL..........ccccuiiiiiiiiiic e 47
SUMMING Uittt ettt e e e st e e e s s e e e e s e a7

6 — Working With COMMANS............csseemmmmmmmmssssssssmmnmmssmmssssssssssssnsssmssssssssssns 48
What Exactly Are COMMEANUS?......ciiiiiiiiiiiiiiiiieeieee e e e e e ee e e e e 48
Identifying COMMANGS..........ccceiiiiiiieieee e e e s e e e e e e e e e e s eeeeeees 49
type — Display A COMMANA'S TYPE.....uuiiiiiiiiiiie ettt 49
which — Display An Executable’'s LOCAtioN..........cccuuuviiviieeeeei i e e 49
Getting A Command's DOCUMENTALION............ccccciiiiiiieiee e e e e 50
help — Get Help For Shell BUiltiNS.oooiiiii e 50
--help — Display Usage INformation............cccuuvieiieiee e 51
man — Display A Program's Manual Page..........ccccoeouuiiieiiniiiiee i 51

apropos — Display Appropriate CoOmMMaNS............oovecccviiiiiirieeeee e eeerreeee e e e eeenes 53

whatis — Display A Very Brief Description Of ACommand..............cccceeeeeeiiiiiiiinnnn.n. 53

The Most Brutal Man Page Of Them All.........coooiiiiiiieeeee e 53

info — Display A Program's INfo ENtry.........cooiiiiiiiii e 54
README And Other Program Documentation Files............cccccovviiieeeieeeineeeiiiinn, 55
Creating Your Own Commands With aliaS............eevvieeeiiiiiiiiiiiiiccccee e 56
ReVISITING Old FrIENAS.....ciiiiiiiiiii et e et eeeeaeannne 58
FUMhEr REAGING. ... i e e e e e e s s e r e e e e e e e e e e s nnsrnnnes 58
Al (=0 | 1= o3 1 [0 o RS 59
Standard Input, OULPUL, AN EFTOF.........coii i e e eeeees 59
Redirecting Standard OULPUL...........ueiiiiiiiiiee ettt e e s e e eeeeanenees 60
Redirecting Standard EITOr..........c.uuuiiiiieeeee et e e e e e e e s s e e e e e e e e e e s s s snnnnneenes 61
Redirecting Standard Output And Standard Error To One File.......cccoooovvviviiiinnnnnn. 62
Disposing Of Unwanted OUIPUL.........cccvuriiiiiieiieeeee ettt iee e e e e reee e e e e 63
1dev/Null IN UNIX CUIUFE.......oooiiiiiiie ettt 63
Redirecting Standard INPUL...........ooiiiiie e enees 63
Cat — CONCALENALE FlES....... et 63
PIPEIINES. ... e e e e e e e e e a s e aaaaan 65
11 (=] T 66
unig - Report Or Omit Repeated LiNeS...........ccccviiiiiiieiie e 66
wc — Print Line, Word, And Byt COUNLS.........eeiiiiiiiiiiiiiiiiiieeeeece e 67
grep — Print Lines Matching A Pattern............uuuiiiiiiiiee e 67
head / tail — Print First / Last Part Of FileS.........oociiiii e 68
tee — Read From Stdin And Output To Stdout And Files.........cccveeeiiiiiiiiieeeieeeiiinnn, 69
Y0011 o L o PRSPPI 70
Linux IS AbOUL IMagiNatioN..........ccuuiiiiiiiiiiie et eeeeeees 70

8 — Seeing The World As The Shell SEES It...........cuuueereeerreemsessssssssssssssssnnnnes 72
o = 1 13 o] o RO 72
Pathname EXPanSION.........cooi it e e e s e e e e e e e eeaeennn s 73
Pathname Expansion Of Hidden FileS..........cciiiiiiiiiiiiieee e 74

B I 1o (= q o= L= (o o 1SR 74
ANthMELIC EXPANSION......ueiiiiiiiiiieie et e e e e e s r e e e e e e e e s s s s b aaeeeeeennnas 75
BraCe EXPANSION.ciiiiiiiiiiiiiiiittie ettt et 76
Parameter EXPanSION.uiiii ittt 77
Command SUDSHEULION.cciiiiiiiie et eeeeeeees 78

L 11 To 11T PP 79
DOUDBIE QUOLES.ueeeeeei e e e e e e e e e e e e e e 79
SINGIE QUOLES....ceeiieeeeie ettt e e et e e e e e e e s 81
[SEYo= T 1T @] g = 1= o] (= = 82
Backslash ESCAPEe SEQUENCES.coiiiiiiieiiiiiiie e ettt e e e st e e e e eneeeeeeeeeeeeeeeeneenees 82
Y0011 o L o PRSP 83
FUINEr REAAING. ... teiiie ittt et e e et e e e e s snea e e e e enes 83
9 — Advanced Keyboard TriCKS.....ccummmmmmssmmssnes 84
CommaNnd LiNE EdItINg......ccueaiiiiiie ettt e e 84
LOL T €10 T 1Y, (0¥ =] 0 0T o | P 84

1Y/ T o 13377 T T 54 O 85
Cutting And Pasting (Killing And Yanking) TEXL..........cccouvreiiiiieereeiiinens 85

B =TT = T 2 86

1ii

(@70 0] o] 1= 1o o TS 86

Programmable CoOmPIEtiON........c...uuiiiiiiiiee e e e e e e e e e e e eeeees 88
0o 1o [1] (o] Y2 TR 88
Y=To T (o o] o T] (o] Y2 89

[115y (o Y T 0 = 1 13 o o SRR 91
o 1] o] PP 91
Y011 o L o PRSP 92
FUMNEr REAMING. ... eeiiee ittt et e e e e sne e e e s enneee e e e enee 92
10 — PEIMISSIONS......ccceirssisssnnnsnsssssnes 93
Owners, Group Members, And Everybody EISe..........cccciiiiiiiiiiiiiiiieeeee e 94
Reading, Writing, AN EXECULING.......ccuuuiiiiiiiiieeeeeessceiiiieeee e e e e e e e e e s s sseenrreeeeeeeeaeeeeeeeeenes 95
chmod — Change file MOde.........cccviiiii e 97
What The HeCK IS OCLal?........cooiiiiiieeee e 98
Setting File Mode With The GUILL.........uuuiiiiiiiiii e a e 100
umask — Set Default PermiSSIONS...........ciii it 101
Some Special PerMISSIONS.cviiiii it e e e e e e e e e 103

(@1 g = TaTo T aTo I [(=1 o 11 1= PP SPPPPR 104
su — Run A Shell With Substitute User And Group IDS.........ccccoeveiiiiiiiiiiiiiiie. 105
sudo — Execute A Command AS ANOther USEr..........coooiiiiiiiiiiiiiiieiiiee e 106
UBUNTU AN SUAO.....uiiiiiiieeeee et e e e e e e e e e e e e e eeees 107
chown — Change File OWNner AN GrOUP.........coovuieiiiriiiieeireeee e s s essseneeeeeeeeeeeeeeeeens 107
chgrp — Change Group OWNEISHIP......c.oiiiiiiieiiiee et 109
EXErcising QU PriVIIEOES.coo ottt s et e e e e eeeeee 109
Changing YOUr PasSWOIT.........cccuuiiiiiiiiieee et e e e e e e s s s are e e e e e e e e e e e e sennesraneeees 111
FUMNEr REAGING. ... ittt a e e e e s 112
1] — PrOCESSES...ceeeeuussssssssrsmnnnnssssssssssssmssssnssssssssssmmnssssnsssssssssssnmsssnnssssnsnssssnnen 113
HOW A PrOCESS WOTKS.....ouiiiiiiieee ittt ettt e e e e e 113
VIBWING PrOCESSES. .. uuiiiiiiiiie e e e i e ettt e e e e e e e e e e e e e e e s e s e ssan s e e e e e e eeetnnaeaeeeees 114
Viewing Processes Dynamically With tOp.........cccuviiiiiiiiiiiiiie e 116
CONLrOIlING PrOCESSES. ... ittt e e e et et e e e e e e s s st e e e e eeeeesessssseerrereeeeeeeeees 118
INEITUPTING A PIOCESS. .. .eiiiiiii ettt ettt e et e en e e stee e e staeeennneeeens 119
Putting A Process In The Background.............cceeiiiiiiiiiiiiiiiiceee e 119
Returning A Process To The FOreground.............oooeeciviiimiiieeee e eee e 120
StoppiNg (PauSING) A PrOCESS. ...ccciiiiiiiiieeaieit ettt e e 121

S o = OSSP PPPRRR 122
Sending Signals To Processes With Kill..............cccoo e, 122
Sending Signals To Multiple Processes With Killall...............ccccocoiiin. 125
More Process Related COMMAaNAS.ooiuiiiiiiiiiiiie e 125
Part 3 — Configuration And The Environment............ccoeeeusinnenenns 127
12 — The ENVIFONMENL.........cceeesemmmmmmmmssmsmmsmsmsmssnnes 128
What Is Stored In The ENVIFONMENT?.......cooiiiiiiiiiiie e 128
Examining The ENVIFONMENT.........coiiiiiiiiie it eieee e eeeeeeeeeeneeees 128
Some Interesting Variables...........ovvvie oo 130
How Is The Environment EstabliShed?.............ooiiiii e 131
What's IN A STArtup File 2. ... e e e e 132

iv

Modifying The ENVIFONMENT.........ooiiiiiiiee et e e e seee e e s sneeee e e enneeees 134

Which Files Should We MOdify?.........cooiiiiiiiieiieeee e 134
LN R =To 1 (o] £ TR 134

L0 LS T N =2 (B =T 11 (o] 135
Why Comments Are IMPOITANT............eeeiiiieeeiiiiiiee e e e e e e e e e eeaees 138
ACTIVALING OUI CRANGES. ..cciiiiiiii ittt e e e e e e e e e e saaes 139
Y0011 o L o PP 139
(U1 g L=T g = L= To [T Lo PR 139
13 — A Gentle INtrodUCtiON TO Vi......ccccersvvssssssssssssssssssssssssssmmssssssssssssssssssnnns 140
Why W ShOUIA LEAIN Vi...eiiiiiiiiiiiei ettt eeeeeeeeee 140
A Little BACKGrOUNGoooiiieiiiiieeee e e e e e e e e e e 141
Starting ANd STOPPING Vieeeooeeoiiciiiiiieeee e e e e e e s e e e e e e e e e s s e e e e e e enaenanas 141
Compatibility MOGE.......coiiiieeieee e 142

[T 1] o TN 1Y, o o [= 3SR 143
ENtering INSEIrt MOUE.coiiiiiiiie ettt e e e e beeeeeeeneaee 144
SAVING OUI WOTK....cciii ittt et e e e e e e s s eeeeaaaeeeeeeratnn s eeeeeeeenns 144
Moving The CUrSOr AFOUNG............ooiiuiiiiiiii e e e e e ae e e e e e e e e eeaaeeaaens 145
BASIC EQITING. ... eteeeeeiit ittt e e 146
F Y o] 01T o 1TV T =« S PP 146

(@ oT=] o1 TgTo 1 AN N o = TP 147
(1= T T o = SO 148
Cutting, Copying ANd Pasting TeXt.......ccuuuiiiiiiiiiee et 149

0 Lo} 11 o N TP UEEPORRN 151
SEArCH AN REPIACE.ciiiie et e e e e e e e e s raeaaee 151
Searching WIthin A LINE.......uuiiiiiiie et 151
Searching The ENLIre File... ... e e e e e eeaes 151
Global Search ANd REPIACE.coiuiiiiiei e 152
Editing MUIIPIE FIlES.....eiiieiieiiee et e e e e e e e e e e e e e e e e e aeeanes 154
SWItChing BEtWEEN FlES..... e 155
Opening Additional Files FOr EQitiNg..........ccuvvieiiiiiieiicc e 155
Copying Content From One File Into ANOther.........cccovvvvivieeeiieee e, 156
Inserting An Entire File INt0 ANOTNET.........ocuiiiiiiie e 157
SAVING OUI WOTK ..ttt e e e e e e s s e e e e e e e e e e s s sa e e e e e e e e enennnnas 158
FUNEr REAMING. ... eeiiieiiiiii ettt e e e sttt bbb bbabbebeeenenee 159
14 — Customizing The PrompPet...........cccccueemmmmmsssssssssmmsnssmmmmssssssssssssssssmmsssssss 160
ANALOMY OF A PrOMPL. .o e e e e e e s 160
Trying Some Alternate Prompt DESIGNS.c.uuviiiiiiiiiieeeiiiieeee et 162
X [0 11T @] o] SRR 163
Terminal CONfUSION........coii e e e e e e 163

1Y T0 AV T o T I TSI O T =T 166
SAVING THE PrOMPL....ci ittt e e e e et e e e s enba e e e e e e e e s 167
IS0]] T o o TR 167
FUMhEr REAAING. ittt e e e e e e s s e e e e e e e e et e e e eaeeaanes 168
Part 4 - Common Tasks And Essential TOOIS........cccoorrerirrmniinnnns 169
15 — Package ManagemMeENL.............covsuemmmmmrmmmssssssssssnmmsssmmmssssssssssnnssssmsmssssssss 170

PaCKagIiNg SYSIEIMS.....ceiiiiiiii i e e e s e e e e e e e e e e e e e e e aeaaaen 170

How A Package SYStemM WOIKS.........cooiiiiiiiiiiiee et e e e e eeees 171
PaCKAGE FIlES..... ettt e et e e b bbb 171
=T 010 1S 0] 1= SRR 171
D =T 0 1= 0 To [=T o Lo T PR 172
High And Low-level Package TOOIS.........ueiiiiiiiiiiiiiee e 172

Common Package Management TASKS.uuiirieeiiiiiicciiiiereeie e e e esrneeee e e e e e 173
Finding A Package IN A REPOSITOIY.......coiiiiiiiiie it 173
Installing A Package From A REPOSITONY.......cuuuiiieeiiiiiiiiiiiiiieeee e e esieeeeee e e 173
Installing A Package From A Package File............coooooiiiiiiee 174
ReMOVING A PACKAGE.........eiiiiiiiiiiii i 174
Updating Packages From A REPOSILOMNY.......ccuvueeeiiiiiiiiiiiiieeeeeee e e e e e e 175
Upgrading A Package From A Package File.........ccccoiiiiiiiiiiiiii e 175
Listing INStalled PaCKageS........ovveiiiiiiiiiieeee et 176
Determining If A Package Is Installed............cccoooviiiiiiiiiiii e 176
Displaying Info About An Installed Package............cccouvviiiiiiiieee e 177
Finding Which Package Installed A File..........ccccuiiiiieiiiee e 177

SUMIMING U P e e e e e e e s e s s bbb b e e e e e e e e e e e s s e aanba s 177

The Linux Software Installation Myth.............ccveviiiiie s 178

(U1 g L=T g = L= To [T Lo TR 179

16 — StOrage MEAI@A......cuureeesssssssssmmnnsssssssssssssssnnnnsssssssssssssssnnnnssssssssssssssnnnnsnsss 180

Mounting And Unmounting Storage DEVICES..........ccoviuiiireiiiiiiiee i 180

Viewing A List Of Mounted File SYStEMS.........ccoiiiiiiiiiiiiieiccce e 182
Why Unmounting IS IMPOrtant.............ccueeieeieeeeiiiiiiiieeeeeeee e e e e eeeens 185
Determining DEVICE NAMES..........uuiiiiiiiiiieeee et 186

Creating New File SYSIEMS.......ccccuiiiiiiiiieee e r e e e e e e e e e e e eaeennnas 189
Manipulating Partitions With fdiSK.............ooooiiiiii e 189
Creating A New File System With MKFS.........cccooeeeiiiiiiiiceece e 192

Testing And Repairing File SYSIEMS........uuiiiiiiiieii e 193

WHAE TRE FSCK?..eeeiiiiiiee et e e e e e e e n e e e aeeees 193

Formatting FIOPPY DISKS.......cccuuiiiiiiiiiiee ettt e e e s e e e e e e e e e e s s snnaraneeeeeeees 193

Moving Data Directly TO/FrOm DEVICES.coiiuuiiieeiiiiieie e eeiiie e s eiee e 194

Creating CD-ROM IMAJES.cutiiiieiiieieeiiiiieeeer e e e e e e e e sssttere e e e e e e e e s s s s s s e e e e eeeenennnnas 195
Creating An Image Copy Of A CD-ROM.......cccoiiiiiiiiiiiie e 195
Creating An Image From A Collection Of FileS...........cccoviiiiiiiiiiiiiiiee e 195

A Program By Any Other NaME........ccuiiiieiiiiiiiciiiieieece e e e e e e e e e e e 196

WItING CD-ROM IMAGES. ...eeeiiiiiiii ittt a e a e e e e e e e e as 196
Mounting An ISO IMage DIreClY........ccuuuiiiiiiiiiie e 196
Blanking A Re-Writable CD-ROM.........coicuuiiiiiiiei e 197
LAY 1AL To A g 10 =T TP 197

FUMhEr REAAING........uiiiiiiiiiieie e e e e e e e s e e e e e e e e e e e aaeaanes 197

(= W O3 €= o [PR PR 197

17 — NEEWOIKING......ccuummeemseemmmmmmmmnmmmsnsnnmsnsssnsssnnnsssnssssssssssssssssssssssssnssssssssssssnns 199

Examining And Monitoring A NETWOIK ..ottt 200
11 o P 200
TFAICEIOULE. ...t 201
(12T £ 2= TP 202

Transporting Files Over ANEIWOTK............uviiiiiiiiece e 203

vi

T ST £ (= 1« PPN 206
Lo =] PPN 206
Secure Communication With Remote HOSES.........c.uevviiiiiiiiiiii e 206
LTS PP PP 207
TUNNElNG WITh SSH...ooiiiiii e eeee 210

ES o 0 A [0 1K 1 o T 211
AN SSH Client FOr WINGOWS?.......cooiiiiiiiieieeee ettt e e e aavanaee e 212
FUINEr REAAING. ... eeiiieiiiiii ettt s bbb eenees 212
18 — Searching FOI FilES...........cccuuuueemmmemmmemsssmsssnnes 213
locate — Find Files The EASY WaY........uuuiiiiiiiiieiie et e e e e e e e e e e 213
Where Does The locate Database Come From?........cccceeeeviiiieiiiiiiiiiiiieeeeeeene. 215

find — Find Files The Hard Way...........oooiiiiiiiiiiie e 215
LSS T PO PTTPTR 216

L@ 01T = 1o £ T PP PP PPTTTTTTTTR 218
Predefined ACHIONS.ooi et 221
User Defined ACHONS. ...ttt beb e eeeeeees 223
IMProving EffICIENCY.........uiiiiiii e 224
D=L 1= TP UUPPPPPPRTR SRR 224
Dealing With FUNNY Fil@NAMES........c.uviiiei et 225

A Return To The PlaygroUNnd...........cooi oo e e e e 226

(@] o] 1 0] o TP 228
FUINEr REAAING. ... etiiieiiiiii ettt 229
19 — Archiving ANd BaCKUP..........ccuccessssmmmmmmsmmsmssssssssnsmnnsssmsssssssssssnsssssssssssss 230
COMPIESSING FIlES....coiiiiiee e 230
o 7 o PPN 231
074] o120 233
Don’'t Be Compressive COMPUISIVE.uuviiiiiiiieeeeee e e e e e e e e eeeens 234
ATCRIVING FIlES. ..ttt ettt ettt e e s et e e e e s aabeeeeebebebeberenne 234
L2 L PSPPI 234

4 | RSP 240
Synchronizing Files AN DIFECIOMES.uuuiiiiiie e 242
UsSiNg rsynC OVEr A NEIWOIK........uuuiiiiiiiiiee e e e e e 245
(U1 g L=T g = L= To [T Lo TR 246
20 — Regular EXPreSSIONS........ccuuuumsssssssssssssssssssssssssssssssssnsssssssssnssnssssssnnnnnns 247
What Are Regular EXPreSSIONS?........ui ittt ettt ettt e e e e eeeees 247

[0 =7 o TP SOPPTT 247
Metacharacters And LItEralS.........c.ueeiii it 249
THE ANY CRATACTETeiiiiiiii e e e e e e e e ebb e 250
Y (o3 s [0 £ T PP P PP PP PTPTPPPTPTRPPTR 251
A Crossword PUuzzle HEIPET........oooi e 251
Bracket Expressions And Character ClasSES........uuuuuiiiiieeiiiiiiiiiiiiiieieeeee e eseniseeneees 252
NN [=To = L1 IS 252
Traditional Character RANGES.coiuiiiiiiiiiieee e 253
POSIX CharacCter CIaSSES.uuiiiiiiiiiee ettt ettt e sneeebebeaenee 254
Reverting To Traditional Collation Order..........ccccoocveiieeiiieeee e 257
POSIX Basic Vs. Extended Regular EXPresSSions.........c.uvvveeeviieeeeeiieicciiiiieeeeeeeeeeeenens 258

vii

F 1 (T T 1110 o PO P TP P PP PP PP PP PTPPPTPTPPPPPTN 259
L@ T = 01 1 1=] £ USRS 260
? - Match An Element Zero Or ONe TIME......cooiiiiiiiiiiiiiee et 260

* - Match An Element Zero Or MOre TiMES.......ooiiuiiiiaiiiiieee et 261

+ - Match An Element One Or MOre TIMES......uuuiiiiiiieiiiiiiiiiiiiieeeeeeeeeiri e eeeeeeins 262

{} - Match An Element A Specific Number Of TImesS............ccccvvrieiiieeee e, 262
Putting Regular EXpressions TO WOTK..........coiiiiiiiiiiieie e 263
Validating A Phone List With grep......cccevvuiiee e 263
Finding Ugly Filenames With find............cccoiiiiiii e 264
Searching For Files With [0CALe..............oviiiiiiiiii e 265
Searching For Text IN 1€SS AN VIM........eviiiiiio e eeeeeens 265
SUMMING UP. ettt st e e s et e e e e e st e e e e eannte e e e s anraeeaeeaeaeas 267
T 1Tl L= Vo [T o T PP 267
21 — TeXt PrOCESSING.....ccuuemseessessmmmmmmmmsmmssmmmmsmsmsssmssssmmmmmsssssssssssssmssssssssssssnnnns 268
F Y o] o] o= 11 To] o F-K @ i 1= PRSP 268
DOCUMIBINES. ...ttt ettt e e e et e et e e e e e e e e s s e nb b bbb e bbb s e e e e e e eeeban e aeeas 269
WD PAgES. ... it 269
EMAIL .. e 269
101 (=T 0 @ 111 011 | SO PR 269
Program SOUICE COUE.........ccceieiiiiiee e e e e e e e e e e e e s s r e e e e e e e e e s s ana e e e e s 269
Revisiting SOmMe Old FrieNdS........c.ueiiiiiiiii et 269
Lo | PSP RRRPPUPPRPIN 270
MS-DOS TEXt VS. UNIX TEXL. ittt 271

S0] P P UPPTPR 271
LU0 o PP 279

Y [Tl o AN Lo 1T o TR PRRRI 280
o | PP RRRPUPPPPPPIN 280
EXPANAING TADS....eeeiiiiieeii i aeaaae 283

PASTE. .. 284
(o] PP 285
(@0 0] o=V 0 To TR = S P T 287
L0 0] 1 0] 0 0 1T OO PPURRRRRPPPPPPPPIN 288

Lo 1 3 PP 288
=1 (o 291

Lo 11 oo @ L T I U= V2RSSRt 292
L1 SR 292
ROT13: The Not-So-Secret Decoder RiNG.........c.ooeevviiiiciiiiiieiiieeee e eeeeeeains 294

LT P EPUUPRRURPPPPPPRPIN 295
People Who Like Sed AISO LIKE........uuiiiiieee it e e e e e e eeeees 303

= 1] 01| USSP 303
SUMMING ULttt e et e s et e e s eeeeeeeas 307
T T gl L= Vo [T T PP 307
A W O (=T [PP P PRSPPI 308
22 — Formatting OULPUL...........cceeeermmsssssssssmmmnsssmmssssssssssnsnnsssssssssssssssssnnsssssnnns 309
Simple FOrmMatting TOOIS.uueiiiii et e e 309
NE— NUMDEE LINES.....eiiiiiiieee e 309
fold — Wrap Each Line To A Specified Length............ccocoiiiiiiiiiiii e, 313

viii

fmt — A SIMple TeXt FOrMAEr.......coo i 313

pr— Format TexXt FOr PrintiNg.......ccccuuiiiiiiieee e e e e e e e e e e aeeees 317
printf — Format ANd Print DAta..........ccueviiiiiiiiie e 318
Document FOrmatting SYSIEMS.......evuiiiieeiii e e e e e e e s e e e e e e eeeees 321
o 0 P PEESRRRRSRRN 322
SUMIMING UP . e e e e e e e s s s st bbb e e e e e e e e e e s e s e nanea s 328
T VTl L= Vo [T o T PP 328
22 Sl d 1111111 1 ¢ S 330
A Brief HiStory Of PriNtING........cuuiiiiiiiiiiiiie e e e e e e e e e 330
Printing 1N The DimM TIMES.......uiiiiiiiiiiee ettt eeneaeaees 330
Character-Dased PriNEIS.........ccoiiiiiiiiiie e 331
1T o] g1 or= 1 = 101 =] £ SRR 332
PrNTING WITN LINUX. ..ttt e s e e e e s s ss e e e e e e eeebab e e e e e eeenee 333
Preparing Files FOr PrintiNg.......ccccuuuiiiiiiiee et e e e e e e e e e nnenaeneees 333
pr — Convert Text Files FOr Printing........cooouuiiiiiiiiiee e 333
Sending A Print JOD TO A PrINTEI.......eiiiiiieiiee e e e e e e 335
Ipr — Print Files (Berkeley StylE)........uuuuuiiiiiiiiie it 335

Ip — Print Files (SYStEM V STYIE)......ccuviiiiiiiei e 336

YN a0 11 a1 G @ o) 1o] = V2 o L3S ERERRR 337
Monitoring And Controlling Print JODS.........coiiiiiiiiiiiee e 340
Ipstat — Display Print System StatusS.........oovveeiiiiiecciiiieeeeeee e 340
Ipg — Display Printer QUEUE SEALUS.........coiiuiiiiieiiiiieee ettt 341
Iprm / cancel — Cancel Print JODS.........ooooiiiiiiiieeee e 342
Y0011 o L o SO 342
FUMNEr REAGING. ... ittt e e e e e e e e e e aeeeees 342
24 — Compiling Programs..........ccseeeesssmmssssssssssssnssssmsssssssssssssnsssssssssssssssssnnes 344
{0V F= N @ o] o111 T P 344
Are All Programs COmMPIlEA?.........uuueiiiiiiee e e e 345
ComPIliNG A C PrOQIAIM.coiiiiiiiiie ettt et e e e e e e e s e e e e e e e e e e as 346
ODbtaining The SOUICE COUE......ccuiiieeii i e e e e e e eeeeaeeees 346
EXamining The SOUICE TIEE......ccciiiceiiiieeeeee e et e e e e e e e s e 348
BUIIdING The Program..........cuuiiiiiiiiiieee ettt 350
LISy P11 Ta o I I g 1= = (0T | = o P 354
SUMMING UP. ettt ettt e e e s ettt e e e e sttt e e e s eanbee e e e e snbreeaaeaaaaas 354
T LT g L= Vo [T o T PP 355
Part 5 — Writing Shell SCripts.......ccoccccciiiimmmniiircrrr s 357
25 — Writing YOUF FirSt SCHIPL.........ovvevriiiriiiiiisssssssssssssssssssssssssssssssssss s nemssas 358
What Are ShEll SCHPIS?... e e e e e e e e e e e e e e e as 358
HOW TO Write A SHell SCHPL.......eeeiiiiiiiiiee e aeaeaans 358
SCHPL FIle FOIMAL......ciiiiiiie e 359
Executable PermiSSIONS.cuuiiii ittt 360
Yol] o) Q1 L= I Yo 1T PSP 360
GOOd LOCALIONS FOr SCHPLS. ..uutrriiiiiieeeeeiiieeiiiieeeee e e e e e e e e e sss st reneereeeeeeessesenseaeenaeeees 362
MOre FOMAttiNg TrCKS.eiiiiieiiiiie ittt ettt e et e e e e et e e e s enbeee e e s saneenes 362
o] oo @] o] 1 0T o I\ F= T 41T PR 362

ix

Indentation ANd Lin€ CONtINUATION.cceeueeiee ettt e e e e eaaeens 362

Configuring vim FOr SCript WItING......ccccvviieieiireeee e 363
SUMMING UP. ettt e e ettt e e e e st bt e e s enbb e e e e s snbreeaeaaaeeas 364
FUINEr REAAING. ... eeiiieiiiiiie ettt 364

26 — StArting A PIOJECT..........covvvvsisseemnnnnssisssssssssssnnnnssssssssssssssssssssssssssssnnnnnnns 365
First Stage: Minimal DOCUMENT..........coiiiiiiiiiiiee et 365
Second Stage: Adding A Little Data...........cuueeeriieeeeeiiiiiiiieeie e 367
Variables ANA CONSTANTS.uueiiiiiii i e e e e e e 368

Assigning Values To Variables And CoNnstants.............cccccvvveieiiieeeeeeeiins e 371
HEIE DOCUMENTS. ... e e e e e e e e e e et e e e e e e enn e e eennas 372
IS0]] 0T o o TR 375
T T gl =T Vo [T o T PP 375

27 — TOP-DOWN D@SiQN.....ccccersssssssssnmmnnnssssssssssssssnmnmssssssssssssssssssnssssssssssssssnnns 376
SRNEI FUNCHONS. ...ttt st e e e e 377
LOCAl Vali@bBIES. ...t e e e e aaaaa 380
Keep SCrPtS RUNMING.......ii it e e s e e e e e e e e st e e e e e e e e e s s s e nnnnnrereeeeeeeeees 381

Shell Functions In Your .bashrc File..........cccoiiiiiiiii e, 384
IS0]] 0T o o PP 384
T T gl L= Vo [T o T PP 384

28 — Flow Control: Branching With if..........ccccccmmmmmmmmmmmmmmmmmmmmmsmmmssssssssmnnanss 385
] PRSP PPPRP 385
EXIE STALUS. ...utiiieiiecie e e e e e e e e e r e e e e e e e e e e e e e e e e e aeaaaaaae 386
LT PP 388

FlE EXPIESSIONS. ..ttt ie ettt ettt ettt e e skt e e e s ettt e e e e abbbbabebebebebebebennes 388
SHING EXPrESSIONS. ... ieeiitiieieee e e e e e s et e e e e e e e e s s s et eeeeeaeeeeessannnsreeeneeeeeees 391
INEEQET EXPIrESSIONS.....ccc it i i ittt e e e e e e e e e e e e e s s s e e e e e e e e e e e e s s e e e e e s 392
A More Modern Version Of tEST.........ooiiiiiiiiieeeee e 393
(@) IR DI e T T=To Bl g) (=T o =T S 395
COMDINING EXPIrESSIONS.eiiiiiiiiiiee ettt e e e eieee ettt e e e st e e e e s abee e e e s snseeeaeaanneeeeesanns 396

Portability Is The Hobgoblin Of Little MiNdS...........cccceeeiiiiiiiiiiecee i 398
Control Operators: Another Way To Branch...........cccccevvieeiiiiiiicieeeceee e, 399
SUMMING ULttt et e e s et e e s s e e e eeeeas 399
T T gl L= Vo [T T PP 400

29 — Reading Keyboard INPUL..............ccccuuumeussesssussssssssssssssssssssssssssssssssssssss 401
read — Read Values From Standard INPUL............cueeeeireeeeo e 402

(@] o] 1 0] o 1= TP 404
| T PP P PP PP PP PPPTTTPPPPPTPPRt 406

YOU Can't PIPE FEAU.........uuiiiiiiiiiie e ettt e e e 407
ValidAting INPUL......oooiiiieie ettt ettt e s e e s nnnnrnnnree 408
LT 01 L TP 409
SUMMING UP. ettt et e e e s ettt e e e e st b ae e e e s astae e e e e e e e e e aeeeeaenas 411

EXIFA CFEAIL.eeeeeiiiiie e e e e e e e e e e e e e 411
FUINEr REAAING. ... eiiei ettt e et e e e s e b be e e e e snnbeneeees 411

30 - Flow Control: Looping With wWhile / UNTil............c.eemeeeeemseeemsseenssninsnnes 412

WHIHIE. e 412
Breaking OUt Of A LOOP. .. .ueiia ittt et e s e e e snbeeee e e e 415
UNEIL e e e 416
Reading Files WIth LOOPS.uuuiiiiiiee ittt e e e e e e e e e e e e eaaees 417
SUMIMING UP . e e e e e e e s s s st bbb e e e e e e e e e e s e s e nanea s 418
T VTl L= Vo [T o T PP 418
31 — TroubleSNOOLING........cccurrrrrrrssnnsnnsssssssnnes 419
IS 1= Lo (o = o S 419
IMISSING QUOLES.eeeie ittt e ettt e et e e ettt e e s ettt e e e s sabbe e e e e s anbbeeaeseanseeennnnnes 420
Missing Or Unexpected TOKENS.......ccuiiiiieeeiiieciiiiieie e e e e e e e e e e s 420
Unanticipated EXPaNSIONS.ccceeeiiiiiiiiiiiiii et e e e e e e s s st e e e e e e e e s s ssnnnnreeraa e 421
oo o= 1N =1 o {0] = PP PP PPSPPPPRRIN 423
Defensive ProgramMing.............ccooieciiiieeeeeeeee e e s s s sssitreeereeeeaaeesssennnsnssseesseennneeeees 423
VENFYING INPUL. ...ttt e e et e e e e snr e e e e e e e eaeeas 425
Design 1S A FUNCLION Of TIME...uuuiiiiiiieeei it e e eeeee e e e e e e eeenes 425
=15 € o TP 425
=25 = 1S =2 426

9 1= 11 o o T TSP 427
FINdiNg The Problem Ar€a..........cooi ittt 427

I 2 UeX T T PP PREPPRRPORRN 427
Examining Values During EXECULION.uoviiiiiiiiie e 430

IS0]] T o o SRR 430
FUMhEr REAAING. iiiiiiiiiiiie e e e e e e e e s s e e e e e e e e a e e e eaeeaenes 431
32 - Flow Control: Branching With CASE...........ccccueemvemmsmmmmmmesssssssmmnmmssssnnes 432
(02 LS = TP UTTTTR 432
= L] 11 PP 434
Y0011 o L o PRSP 436
FUNEr REAMING. ... ettt ettt e e e sttt bbb bbb bbb bbebeeeeenees 436
33 — POSitioNal PArameterS.........osssssssssssssssssssssssssssssssssssssssnssnssssssssnnsnsssssnes 437
Accessing The Command LINE.........c..uuviiiiiiiiiei e 437
Determining The Number of ArgUMENTS.........ccoiiiiiiiiiiiiiiiee e 438
shift — Getting Access To Many ArgUMENTS.ccceeeeviiiiciiiiiiiieee e e e e e e s esiie e e e e eeennns 439

S gl ol (=AY o] o] [T 1 o] o S TP 440
Using Positional Parameters With Shell FUNCLIONS..............ooocciiiiiiiiieeccecee e 441
Handling Positional Parameters EN MasSe..........ccoicuiiiiiiiiiiiee i 442
A More Complete APPLICALION.uuuiiiiieeee e e e e e e e 444
Y0011 o L o SO 447
FUMNEr REAGING. ... ittt e e e e e e e e e e aeeeees 450
34 — Flow Control: Looping With fOr............ccccommmmmmmssssssssuemmmnmmnmmmssssssssssnas 451
for: Traditional Shell FOrM.........c..uuviiiiii e 451
(AT 0V USSR 453

for: C Language FOMM.... ...ttt e et beeeeenenees 454
IS0]] T o o TR 455
T T gl =T Vo [T T PP 456

Xi

35 — StriNQgS ANU NUMIBDEIS.......eeeeeeirmismsienismssnssesermssnssnssssnssnsessnsessnsessnsenss 457

Parameter EXPanSION.uiii ittt e 457
BaSIC PAramMELEIS. eieiie ittt ettt e e e ettt e e e e tte e e e e s sneebe b bebebebebeannee 457
Expansions To Manage Empty Variables..........ccccovviiieeee e 458
Expansions That Return Variable Names...........cccvveeeiiiiiiiiiiiicee e 460
SNG OPEIALIONS. ... iteeiee ettt ettt e s st e s e e s e e e e e 460

Arithmetic Evaluation ANd EXPanSION............ooccviiiiiiiiiiee e e e 463
NUMDEE BASES.eeiieiieiiiie e ittt ettt e ettt e e e s ttte e e e e sstaeeeesanneaeeaesannssnnnnnnnes 464
O gt T A @ 01T = 1o] £ TP 464
SIMPIE AMENMELIC. ...eeiiii e 464
ST T 1= o PP 466
[T 0@ 01T =i o] -3 468
[o | o TP 469

bc — An Arbitrary Precision Calculator Language.............ooccuvvviveieeeeeeee e ceiieeeseennnnn 472
L] o T Lo 473
AN EXAMPIE SCHIPL..eeiiiiiiee i e e s s s e e e e e e e e e e e e e e eaernnaas 473

51U]] 0T o T o TS EPRRR 475

(= W O3 €= o [PR PR 475

T T gl =T Vo [T T PP 475

Tl 1 7= TN 476

LT T U I A 4 - N3 476

CrEatiNG AN ATTAYeeeeee ittt et e ettt e e e e bbb e e e e e e bt e e e e e s aabae e e e e s e e e e e e e e e aaaeaaaaaaaaas 476

ASSIGNING ValUES TO AN AITAYcciiiiieiiieeieeteee e e e s s st r e e e e e e e s s s ssnesbrerereeeaeeeseeanaeaes 477

ACCESSING ATay EIEMENES.....uviiiiiiiie e a e e 478

AITAY OPEIALIONS. ...ete ettt ettt e et e et e e e et et e e s e et b e b e b e b e bebennrenenee 480
Outputting The Entire Contents Of AN AITaY..........coccciiiiiiiiie e e e 480
Determining The Number Of Array Elements..........cccooiiieee i 480
Finding The Subscripts Used BY AN ATAY.........uuuriiiiiiieeeeeeiiiiiianseeeeeeeeeinnnneeeees 481
Adding Elements To The End Of AN AITAY......ccuuiiiaiiiiieiee e 481
SOMING AN ATTAY .ceeeieee i ettt e e e e e e s e et e e ee e e e e e s s aassebeaeeeeraeeeeeeeesaansnerneeneeeeeees 482
DElEtING AN ATTAY...ciii i e i ittt e e e e e e e e e s et r e e e e aeae e e e e e snnran e ees 482

SUMIMING UP . e e e e e e e s s s st bbb e e e e e e e e e e e s s e nanta s 483

FUMhEr REAGING. ittt e e e e e e s s s s e e e e e e eeaaaa e e eeeeeannes 484

B el =, (0) 1 TN 485

Group Commands And SUDSNEIIS...........ooceeiiie e 485
Process SUDSHIULION.........oiiiiiiiiiie ettt eeeeeees 486

JLILLC: 1 0L TP PPPRPPRRRP 488

TEMPOTATY FilES....ciiiiiie et e e e e e e e e eeene 491

ASYNCAIONOUS EXECULION. ...ttt saa s 492
1Tz L ST PP P PP PPPPPPPPPP 492

NAMEA PIPES. ..ttt ettt e e e ettt e e e s et e e e e e asbteeeesanneeeeaesannseennenrnnnes 493
Setting Up A NaMEA PiPe.....uuuiiiiiiiiieee ettt e e e e e e e s e s s e e e e e aeeaes 494
USING NaMEA PIPES.....ccco i a e e e e e 494

SUMMING ULttt e et e s et e e s eeeeeeeas 495

T LT gl =T Vo [T T PP 495

Yo = 496

Part 1 — Introduction

Part 1 — Introduction

1 — Introduction

1 - Introduction

I want to tell you a story.

No, not the story of how, in 1991, Linus Torvalds wrote the first version of the Linux
kernel. You can read that story in lots of Linux books. Nor am I going to tell you the
story of how, some years earlier, Richard Stallman began the GNU Project to create a free
Unix-like operating system. That's an important story too, but most other Linux books
have that one, as well.

No, I want to tell you the story of how you can take back control of your computer.

When I began working with computers as a college student in the late 1970s, there was a
revolution going on. The invention of the microprocessor had made it possible for
ordinary people like you and me to actually own a computer. It's hard for many people
today to imagine what the world was like when only big business and big government ran
all the computers. Let's just say, you couldn't get much done.

Today, the world is very different. Computers are everywhere, from tiny wristwatches to
giant data centers to everything in between. In addition to ubiquitous computers, we also
have a ubiquitous network connecting them together. This has created a wondrous new
age of personal empowerment and creative freedom, but over the last couple of decades
something else has been happening. A single giant corporation has been imposing its
control over most of the world's computers and deciding what you can and cannot do
with them. Fortunately, people from all over the world are doing something about it.
They are fighting to maintain control of their computers by writing their own software.
They are building Linux.

Many people speak of “freedom” with regard to Linux, but I don't think most people
know what this freedom really means. Freedom is the power to decide what your
computer does, and the only way to have this freedom is to know what your computer is
doing. Freedom is a computer that is without secrets, one where everything can be
known if you care enough to find out.

Why Use The Command Line?

Have you ever noticed in the movies when the “super hacker,”—you know, the guy who
can break into the ultra-secure military computer in under thirty seconds—sits down at

Why Use The Command Line?

the computer, he never touches a mouse? It's because movie makers realize that we, as
human beings, instinctively know the only way to really get anything done on a computer
is by typing on a keyboard.

Most computer users today are only familiar with the graphical user interface (GUI) and
have been taught by vendors and pundits that the command line interface (CLI) is a
terrifying thing of the past. This is unfortunate, because a good command line interface is
a marvelously expressive way of communicating with a computer in much the same way
the written word is for human beings. It's been said that “graphical user interfaces make
easy tasks easy, while command line interfaces make difficult tasks possible” and this is
still very true today.

Since Linux is modeled after the Unix family of operating systems, it shares the same
rich heritage of command line tools as Unix. Unix came into prominence during the
early 1980s (although it was first developed a decade earlier), before the widespread
adoption of the graphical user interface and, as a result, developed an extensive command
line interface instead. In fact, one of the strongest reasons early adopters of Linux chose it
over, say, Windows NT was the powerful command line interface which made the
“difficult tasks possible.”

What This Book Is About

This book is a broad overview of “living” on the Linux command line. Unlike some
books that concentrate on just a single program, such as the shell program, bash, this
book will try to convey how to get along with the command line interface in a larger
sense. How does it all work? What can it do? What's the best way to use it?

This is not a book about Linux system administration. While any serious discussion
of the command line will invariably lead to system administration topics, this book only
touches on a few administration issues. It will, however, prepare the reader for
additional study by providing a solid foundation in the use of the command line, an
essential tool for any serious system administration task.

This book is very Linux-centric. Many other books try to broaden their appeal by
including other platforms such as generic Unix and MacOS X. In doing so, they “water
down” their content to feature only general topics. This book, on the other hand, only
covers contemporary Linux distributions. Ninety-five percent of the content is useful for
users of other Unix-like systems, but this book is highly targeted at the modern Linux
command line user.

Who Should Read This Book

This book is for new Linux users who have migrated from other platforms. Most likely
you are a “power user” of some version of Microsoft Windows. Perhaps your boss has
told you to administer a Linux server, or maybe you're just a desktop user who is tired of

3

1 — Introduction

all the security problems and want to give Linux a try. That's fine. All are welcome
here.

That being said, there is no shortcut to Linux enlightenment. Learning the command line
is challenging and takes real effort. It's not that it's so hard, but rather it's so vast. The
average Linux system has literally thousands of programs you can employ on the
command line. Consider yourself warned; learning the command line is not a casual
endeavor.

On the other hand, learning the Linux command line is extremely rewarding. If you think
you're a “power user” now, just wait. You don't know what real power is—yet. And,
unlike many other computer skills, knowledge of the command line is long lasting. The
skills learned today will still be useful ten years from now. The command line has
survived the test of time.

It is also assumed that you have no programming experience, but not to worry, we'll start
you down that path as well.

What's In This Book

This material is presented in a carefully chosen sequence, much like a tutor sitting next to
you guiding you along. Many authors treat this material in a “systematic” fashion, which
makes sense from a writer’s perspective, but can be very confusing to new users.

Another goal is to acquaint you with the Unix way of thinking, which is different from
the Windows way of thinking. Along the way, we'll go on a few side trips to help you
understand why certain things work the way they do and how they got that way. Linux
is not just a piece of software, it's also a small part of the larger Unix culture, which has
its own language and history. I might throw in a rant or two, as well.

This book is divided into five parts, each covering some aspect of the command line
experience. Besides the first part, which you are reading now, this book contains:

e Part 2 — Learning The Shell starts our exploration of the basic language of the
command line including such things as the structure of commands, file system
navigation, command line editing, and finding help and documentation for
commands.

e Part 3 — Configuration And The Environment covers editing configuration
files that control the computer's operation from the command line.

e Part 4 — Common Tasks And Essential Tools explores many of the ordinary
tasks that are commonly performed from the command line. Unix-like operating
systems, such as Linux, contain many “classic” command line programs that are
used to perform powerful operations on data.

e Part 5 — Writing Shell Scripts introduces shell programming, an admittedly

What's In This Book

rudimentary, but easy to learn, technique for automating many common
computing tasks. By learning shell programming, you will become familiar with
concepts that can be applied to many other programming languages.

How To Read This Book

Start at the beginning of the book and follow it to the end. It isn’t written as a reference
work, it's really more like a story with a beginning, middle, and an end.

Prerequisites

To use this book, all you will need is a working Linux installation. You can get this in
one of two ways:

1. Install Linux on a (not so new) computer. It doesn't matter which distribution

you choose, though most people today start out with either Ubuntu, Fedora, or
OpenSUSE. If in doubt, try Ubuntu first. Installing a modern Linux distribution
can be ridiculously easy or ridiculously difficult depending on your hardware. I
suggest a desktop computer that is a couple of years old and has at least 256
megabytes of RAM and 6 gigabytes of free hard disk space. Avoid laptops and
wireless networks if at all possible, as these are often more difficult to get
working.

. Use a “Live CD.” One of the cool things you can do with many Linux
distributions is run them directly from a CDROM without installing them at all.
Just go into your BIOS setup and set your computer to “Boot from CDROM,”
insert the live CD, and reboot. Using a live CD is a great way to test a computer
for Linux compatibility prior to installation. The disadvantage of using a live CD
is that it may be very slow compared to having Linux installed on your hard drive.
Both Ubuntu and Fedora (among others) have live CD versions.

Regardless of how you install Linux, you will need to have occasional superuser (i.e.,
administrative) privileges to carry out the lessons in this book.

After you have a working installation, start reading and follow along with your own
computer. Most of the material in this book is “hands on,” so sit down and get typing!

Why | Don't Call It “GNUI/Linux”

In some quarters, it's politically correct to call the Linux operating system the
“GNU/Linux operating system.” The problem with “Linux” is that there is no
completely correct way to name it because it was written by many different

1 — Introduction

people in a vast, distributed development effort. Technically speaking, Linux is
the name of the operating system's kernel, nothing more. The kernel is very
important of course, since it makes the operating system go, but it's not enough to
form a complete operating system.

Enter Richard Stallman, the genius-philosopher who founded the Free Software
movement, started the Free Software Foundation, formed the GNU Project, wrote
the first version of the GNU C Compiler (gcc), created the GNU General Public
License (the GPL), etc., etc., etc. He insists that you call it “GNU/Linux” to
properly reflect the contributions of the GNU Project. While the GNU Project
predates the Linux kernel, and the project's contributions are extremely deserving
of recognition, placing them in the name is unfair to everyone else who made
significant contributions. Besides, I think “Linux/GNU” would be more
technically accurate since the kernel boots first and everything else runs on top of
it.

In popular usage, “Linux” refers to the kernel and all the other free and open
source software found in the typical Linux distribution; that is, the entire Linux
ecosystem, not just the GNU components. The operating system marketplace
seems to prefer one-word names such as DOS, Windows, MacOS, Solaris, Irix,
AIX. T have chosen to use the popular format. If, however, you prefer to use
“GNU/Linux” instead, please perform a mental search and replace while reading
this book. I won't mind.

Acknowledgments
I want to thank the following people, who helped make this book possible:

Jenny Watson, Acquisitions Editor at Wiley Publishing who originally suggested that I
write a shell scripting book.

John C. Dvorak, noted columnist and pundit. In an episode of his video podcast, “Cranky
Geeks,” Mr. Dvorak described the process of writing: “Hell. Write 200 words a day and
in a year, you have a novel.” This advice led me to write a page a day until I had a book.

Dmitri Popov wrote an article in Free Software Magazine titled, “Creating a book
template with Writer,” which inspired me to use OpenOffice.org Writer for composing
the text. As it turned out, it worked wonderfully.

Mark Polesky performed an extraordinary review and test of the text.

Jesse Becker, Tomasz Chrzczonowicz, Michael Levin, Spence Miner also tested and
reviewed portions of the text.

Acknowledgments

Karen M. Shotts contributed a lot of hours, polishing my so-called English by editing the
text.

And lastly, the readers of LinuxCommand.org, who have sent me so many kind emails.
Their encouragement gave me the idea that I was really on to something!

Your Feedback Is Needed!

This book is an ongoing project, like many open source software projects. If you find a
technical error, drop me a line at:

bshotts@users.sourceforge.net

Your changes and suggestions may get into future releases.

Further Reading

e Here are some Wikipedia articles on the famous people mentioned in this chapter:
http://en.wikipedia.org/wiki/Linux Torvalds

http://en.wikipedia.org/wiki/Richard Stallman

e The Free Software Foundation and the GNU Project:
http://en.wikipedia.org/wiki/Free Software Foundation
http://www.fsf.org
http://www.gnu.org

e Richard Stallman has written extensively on the “GNU/Linux” naming issue:
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/gnu/gnu-linux-faq.html#tools

Colophon

This book was written using OpenOffice.org Writer in Liberation Serif and Sans fonts on
a Dell Inspiron 530N, factory configured with Ubuntu 8.04. The PDF version of the text
was generated directly by OpenOffice.org Writer. The cover was produced using
Inkscape. Cover design by William E. Shotts, Jr. Author’s cover photograph by Karen
M. Shotts.

http://www.gnu.org/gnu/gnu-linux-faq.html#tools
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/
http://www.fsf.org/
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/Richard_stallman
http://en.wikipedia.org/wiki/Linux_Torvalds
mailto:bshotts@users.sourceforge.net
http://linuxcommand.org/

Part 2 — Learning The Shell

Part 2 — Learning The Shell

2 — What Is The Shell?

2 — What Is The Shell?

When we speak of the command line, we are really referring to the shell. The shell is a
program that takes keyboard commands and passes them to the operating system to carry
out. Almost all Linux distributions supply a shell program from the GNU Project called
bash. The name “bash” is an acronym for “Bourne Again SHell”, a reference to the fact
bash is an enhanced replacement for sh, the original Unix shell program written by
Steve Bourne.

Terminal Emulators

When using a graphical user interface, we need another program called a terminal
emulator to interact with the shell. If we look through our desktop menus, we will
probably find one. KDE uses konsole and GNOME uses gnome -terminal, though
it's likely called simply “terminal” on our menu. There are a number of other terminal
emulators available for Linux, but they all basically do the same thing; give us access to
the shell. You will probably develop a preference for one or another based on the number
of bells and whistles it has.

Your First Keystrokes

So let's get started. Launch the terminal emulator! Once it comes up, we should see
something like this:

[me@linuxbox ~1$

This is called a shell prompt and it will appear whenever the shell is ready to accept
input. While it may vary in appearance somewhat depending on the distribution, it will
usually include your username@machinename, followed by the current working
directory (more about that in a little bit) and a dollar sign.

If the last character of the prompt is a pound sign (“#”) rather than a dollar sign, the
terminal session has superuser privileges. This means either we are logged in as the root
user or we selected a terminal emulator that provides superuser (administrative)

10

Your First Keystrokes

privileges.

Assuming that things are good so far, let's try some typing. Type some gibberish at the
prompt like so:

[me@linuxbox ~]1$ kaekfjaeifj

Since this command makes no sense, the shell will tell us so and give us another chance:

[me@linuxbox ~1$

bash: kaekfjaeifj: command not found

Command History

If we press the up-arrow key, we will see that the previous command “kaekfjaeifj”
reappears after the prompt. This is called command history. Most Linux distributions
remember the last five hundred commands by default. Press the down-arrow key and the
previous command disappears.

Cursor Movement

Recall the previous command with the up-arrow key again. Now try the left and right-
arrow keys. See how we can position the cursor anywhere on the command line? This
makes editing commands easy.

A Few Words About Mice And Focus

While the shell is all about the keyboard, you can also use a mouse with your
terminal emulator. There is a mechanism built into the X Window System (the
underlying engine that makes the GUI go) that supports a quick copy and paste
technique. If you highlight some text by holding down the left mouse button and
dragging the mouse over it (or double clicking on a word), it is copied into a
buffer maintained by X. Pressing the middle mouse button will cause the text to
be pasted at the cursor location. Try it.

Note: Don't be tempted to use Ctrl-c and Ctrl-v to perform copy and paste
inside a terminal window. They don't work. These control codes have different
meanings to the shell and were assigned many years before Microsoft Windows.

11

2 — What Is The Shell?

Your graphical desktop environment (most likely KDE or GNOME), in an effort
to behave like Windows, probably has its focus policy set to “click to focus.”
This means for a window to get focus (become active) you need to click on it.
This is contrary to the traditional X behavior of “focus follows mouse” which
means that a window gets focus by just passing the mouse over it. The window
will not come to the foreground until you click on it but it will be able to receive
input. Setting the focus policy to “focus follows mouse” will make the copy and
paste technique even more useful. Give it a try. I think if you give it a chance
you will prefer it. You will find this setting in the configuration program for your
window manager.

Try Some Simple Commands

Now that we have learned to type, let's try a few simple commands. The first one is
date. This command displays the current time and date.

[me@linuxbox ~]$ date
Thu Oct 25 13:51:54 EDT 2007

A related command is cal which, by default, displays a calendar of the current month.

[me@linuxbox ~]$ cal
October 2007
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

To see the current amount of free space on your disk drives, type df:

[me@linuxbox ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5012392 9949716 34% /
/dev/sda5 59631908 26545424 30008432 47% /home
/dev/sdal 147764 17370 122765 13% /boot
tmpfs 256856 0 256856 0% /dev/shm

12

Try Some Simple Commands

Likewise, to display the amount of free memory, type the free command.

[me@linuxbox ~]$ free

total used free shared buffers cached
Mem: 513712 503976 9736 (0] 5312 122916
-/+ buffers/cache: 375748 137964
Swap: 1052248 104712 947536

Ending A Terminal Session

We can end a terminal session by either closing the terminal emulator window, or by
entering the exit command at the shell prompt:

[me@linuxbox ~]$ exit

The Console Behind The Curtain

Even if we have no terminal emulator running, several terminal sessions continue
to run behind the graphical desktop. Called virtual terminals or virtual consoles,
these sessions can be accessed on most Linux distributions by pressing Ctrl-
Alt-F1 through Ctr1-Alt-F6 on most systems. When a session is accessed,
it presents a login prompt into which we can enter our user name and password.
To switch from one virtual console to another, press A1t and F1-F6. To return to
the graphical desktop, press ALt -F7.

Further Reading

e To learn more about Steve Bourne, father of the Bourne Shell, see this Wikipedia
article:

http://en.wikipedia.org/wiki/Steve_Bourne
e Here is an article about the concept of shells in computing:

http://en.wikipedia.org/wiki/Shell (computing)

13

http://en.wikipedia.org/wiki/Shell_(computing
http://en.wikipedia.org/wiki/Steve_Bourne

3 — Navigation

3 — Navigation

The first thing we need to learn to do (besides just typing) is how to navigate the file
system on our Linux system. In this chapter we will introduce the following commands:

e pwd - Print name of current working directory
e cd - Change directory

e 1s - List directory contents

Understanding The File System Tree

Like Windows, a Unix-like operating system such as Linux organizes its files in what is
called a hierarchical directory structure. This means that they are organized in a tree-like
pattern of directories (sometimes called folders in other systems), which may contain
files and other directories. The first directory in the file system is called the root
directory. The root directory contains files and subdirectories, which contain more files
and subdirectories and so on and so on.

Note that unlike Windows, which has a separate file system tree for each storage device,
Unix-like systems such as Linux always have a single file system tree, regardless of how
many drives or storage devices are attached to the computer. Storage devices are
attached (or more correctly, mounted) at various points on the tree according to the
whims of the system administrator, the person (or persons) responsible for the
maintenance of the system.

The Current Working Directory

Most of us are probably familiar with a graphical file manager which represents the file
system tree as in Figure 1. Notice that the tree is usually shown upended, that is, with the
root at the top and the various branches descending below.

However, the command line has no pictures, so to navigate the file system tree we need
to think of it in a different way.

14

The Current Working Directory

Imagine that the file system is a maze shaped like an upside-down tree and we are able to

Sy
= (3 hin
= (3 boot
B C3dev
B Chetc
G} 43 home
= (3 bshotts
Cafip
= (3 karen
& [[3 lost+found

(23 enlightenment
(23 .gnome
- (I3 .gnome- deskiop

Figure 1: File system tree as shown by a
graphical file manager

stand in the middle of it. At any given time, we are inside a single directory and we can
see the files contained in the directory and the pathway to the directory above us (called
the parent directory) and any subdirectories below us. The directory we are standing in is
called the current working directory. To display the current working directory, we use the
pwd (print working directory) command.

[me@linuxbox ~]$ pwd
/home/me

When we first log in to our system (or start a terminal emulator session) our current
working directory is set to our home directory. Each user account is given its own home
directory and when operating as a regular user, the home directory is the only place the
user is allowed to write files.

Listing The Contents Of A Directory

To list the files and directories in the current working directory, we use the 1S command.

[me@linuxbox ~]$ 1s
Desktop Documents Music Pictures Public Templates Videos

15

3 — Navigation

Actually, we can use the 1s command to list the contents of any directory, not just the
current working directory, and there are many other fun things it can do as well. We'll
spend more time with 1s in the next chapter.

Changing The Current Working Directory

To change your working directory (where we are standing in our tree-shaped maze) we
use the cd command. To do this, type cd followed by the pathname of the desired
working directory. A pathname is the route we take along the branches of the tree to get to
the directory we want. Pathnames can be specified in one of two different ways; as
absolute pathnames or as relative pathnames. Let's deal with absolute pathnames first.

Absolute Pathnames

An absolute pathname begins with the root directory and follows the tree branch by
branch until the path to the desired directory or file is completed. For example, there is a
directory on your system in which most of your system's programs are installed. The
pathname of the directory is /usr/bin. This means from the root directory (represented
by the leading slash in the pathname) there is a directory called "usr" which contains a
directory called "bin".

[me@linuxbox ~]%$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

[me@linuxbox bin]$ 1s

...Listing of many, many files ...

Now we can see that we have changed the current working directory to /usr/bin and
that it is full of files. Notice how the shell prompt has changed? As a convenience, it is
usually set up to automatically display the name of the working directory.

Relative Pathnames

Where an absolute pathname starts from the root directory and leads to its destination, a
relative pathname starts from the working directory. To do this, it uses a couple of special
symbols to represent relative positions in the file system tree. These special symbols are
"." (dot) and ".." (dot dot).

The "." symbol refers to the working directory and the ".." symbol refers to the working
directory's parent directory. Here is how it works. Let's change the working directory to /

16

Changing The Current Working Directory

usr/bin again:

[me@linuxbox ~]%$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Okay, now let's say that we wanted to change the working directory to the parent of
/usr/bin which is /usr. We could do that two different ways. Either with an absolute

pathname:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usr

Or, with a relative pathname:

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usr

Two different methods with identical results. Which one should we use? The one that
requires the least typing!

Likewise, we can change the working directory from /usr to /usr/bin in two
different ways. Either using an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Or, with a relative pathname:

[me@linuxbox usr]$ cd ./bin
[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important that I must point out here. In almost all cases, you can

17

3 — Navigation

omit the "./". It is implied. Typing:

[me@linuxbox usr]$ cd bin

does the same thing. In general, if you do not specify a pathname to something, the
working directory will be assumed.

Some Helpful Shortcuts

In table 3-1 we see some useful ways the current working directory can be quickly
changed.

Table 3- 1: cd Shortcuts

Shortcut Result
cd Changes the working directory to your home directory.
cd - Changes the working directory to the previous working directory.

cd ~user_name Changes the working directory to the home directory of
user_name. For example, cd ~bob will change the directory to
the home directory of user “bob.”

Important Facts About Filenames

1. Filenames that begin with a period character are hidden. This only means that
1s will not list them unless you say 1s -a. When your account was created,
several hidden files were placed in your home directory to configure things
for your account. Later on we will take a closer look at some of these files to
see how you can customize your environment. In addition, some applications
place their configuration and settings files in your home directory as hidden
files.

2. Filenames and commands in Linux, like Unix, are case sensitive. The
filenames “File1” and “file1” refer to different files.

3. Linux has no concept of a “file extension” like some other operating systems.
You may name files any way you like. The contents and/or purpose of a file is

18

Changing The Current Working Directory

determined by other means. Although Unix-like operating system don’t use
file extensions to determine the contents/purpose of files, some application
programs do.

Though Linux supports long filenames which may contain embedded spaces
and punctuation characters, limit the punctuation characters in the names of
files you create to period, dash, and underscore. Most importantly, do not
embed spaces in filenames. If you want to represent spaces between words in
a filename, use underscore characters. You will thank yourself later.

19

4 — Exploring The System

4 — Exploring The System

Now that we know how to move around the file system, it's time for a guided tour of our
Linux system. Before we start however, we’re going to learn some more commands that
will be useful along the way:

e 1s - List directory contents
e file — Determine file type

e less — View file contents

More Fun With 1s

The 1s command is probably the most used command, and for good reason. With it, we
can see directory contents and determine a variety of important file and directory
attributes. As we have seen, we can simply type 1s to see a list of files and
subdirectories contained in the current working directory:

[me@linuxbox ~]$ 1s
Desktop Documents Music Pictures Public Templates Videos

Besides the current working directory, we can specify the directory to list, like so:

me@linuxbox ~]$ 1s /usr
bin games kerberos 1libexec sbin src
etc include 1lib local share tmp

Or even specify multiple directories. In this example we will list both the user's home
directory (symbolized by the “~” character) and the /usr directory:

[me@linuxbox ~]$ 1s ~ /usr
/home/me:

20

More Fun With Is

Desktop Documents Music Pictures Public Templates

/usr:
bin games kerberos 1libexec sbin src
etc include 1lib local share tmp

We can also change the format of the output to reveal more detail:

[me@linuxbox ~]$ 1s -1
total 56

drwxrwxr - x
drwxrwxr - x
drwxrwxr - X
drwxrwxr - x
drwxrwxr -x
drwxrwxr - x
drwxrwxr - x

me me 4096 2007-10-26 17:20 Desktop
me me 4096 2007-10-26 17:20 Documents
me me 4096 2007-10-26 17:20 Music

me me 4096 2007-10-26 17:20 Pictures
me me 4096 2007-10-26 17:20 Public

me me 4096 2007-10-26 17:20 Templates
me me 4096 2007-10-26 17:20 Videos

NNNNDNDDNDN

Videos

By adding “-1” to the command, we changed the output to the long format.

Options And Arguments

This brings us to a very important point about how most commands work. Commands
are often followed by one or more options that modify their behavior, and further, by one
or more arguments, the items upon which the command acts. So most commands look

kind of like this:

command -options arguments

Most commands use options consisting of a single character preceded by a dash, for
example, “-1”, but many commands, including those from the GNU Project, also support
long options, consisting of a word preceded by two dashes. Also, many commands allow
multiple short options to be strung together. In this example, the 1S command is given
two options, the “1” option to produce long format output, and the “t” option to sort the

result by the file's modification time.

[me@linuxbox ~]$ 1ls -1t

21

4 — Exploring The System

We'll add the long option “--reverse” to reverse the order of the sort:

[me@linuxbox ~]$ 1s -1t --reverse

The 1s command has a large number of possible options. The most common are listed in
the Table 4-1.

Table 4- 1: Common Is Options

Option Long Option Description

-a --all List all files, even those with names that begin
with a period, which are normally not listed
(i.e., hidden).

-d --directory Ordinarily, if a directory is specified, 1s will

list the contents of the directory, not the
directory itself. Use this option in
conjunction with the - 1 option to see details
about the directory rather than its contents.

-F --classify This option will append an indicator character
to the end of each listed name. For example,
a “/” if the name is a directory.

-h --human-readable Inlong format listings, display file sizes in
human readable format rather than in bytes.

-1 Display results in long format.

-r --reverse Display the results in reverse order.

Normally, 1s displays its results in ascending
alphabetical order.

-S Sort results by file size.

-t Sort by modification time.

A Longer Look At Long Format

As we saw before, the “-1” option causes 1S to display its results in long format. This
format contains a great deal of useful information. Here is the Examples directory
from an Ubuntu system:

22

More Fun With Is

-rw-r--r-- 1 root root 3576296 2007-04-03 11:05 Experience ubuntu.ogg
-rw-r--r-- 1 root root 1186219 2007-04-03 11:05 kubuntu-leaflet.png
-rw-r--r-- 1 root root 47584 2007-04-03 11:05 logo-Edubuntu.png
-rw-r--r-- 1 root root 44355 2007-04-03 11:05 logo-Kubuntu.png
-rw-r--r-- 1 root root 34391 2007-04-03 11:05 logo-Ubuntu.png
-rw-r--r-- 1 root root 32059 2007-04-03 11:05 oo-cd-cover.odf
-rw-r--r-- 1 root root 159744 2007-04-03 11:05 oo-derivatives.doc
-rw-r--r-- 1 root root 27837 2007-04-03 11:05 oo-maxwell.odt
-rw-r--r-- 1 root root 98816 2007-04-03 11:05 oo-trig.xls
-rw-r--r-- 1 root root 453764 2007-04-03 11:05 oo-welcome.odt
-rw-r--r-- 1 root root 358374 2007-04-03 11:05 ubuntu Sax.ogg

Let's look at the different fields from one of the files and examine their meanings:

Table 4-2: Is Long Listing Fields

Field Meaning

“rwW-r--r-- Access rights to the file. The first character indicates the
type of file. Among the different types, a leading dash
means a regular file, while a “d” indicates a directory.
The next three characters are the access rights for the
file's owner, the next three are for members of the file's
group, and the final three are for everyone else. The full
meaning of this is discussed in Chapter 10 — Permissions.

1 File's number of hard links. See the discussion of links
later in this chapter.

root The user name of the file's owner.

root The name of the group which owns the file.
32059 Size of the file in bytes.

2007-04-03 11:05 Date and time of the file's last modification.
oo-cd-cover.odf Name of the file.

Determining A File's Type With file

As we explore the system it will be useful to know what files contain. To do this we will
use the file command to determine a file's type. As we discussed earlier, filenames in
Linux are not required to reflect a file's contents. While a filename like “picture.jpg”
would normally be expected to contain a JPEG compressed image, it is not required to in
Linux. We can invoke the file command this way:

23

4 —

Exploring The System

file filename

When invoked, the file command will print a brief description of the file's contents.

For example:

There are many kinds of files. In fact, one of the common ideas in Unix-like operating
systems such as Linux is that “everything is a file.” As we proceed with our lessons, we

[me@linuxbox ~]$ file picture.jpg
picture.jpg: JPEG image data, JFIF standard 1.01

will see just how true that statement is.

While many of the files on your system are familiar, for example MP3 and JPEG, there

are many kinds that are a little less obvious and a few that are quite strange.

Viewing File Contents With less

The 1less command is a program to view text files. Throughout our Linux system, there
are many files that contain human-readable text.

convenient way to examine them.

What Is “Text”?

There are many ways to represent information on a computer. All methods
involve defining a relationship between the information and some numbers that
will be used to represent it. Computers, after all, only understand numbers and all
data is converted to numeric representation.

Some of these representation systems are very complex (such as compressed
video files), while others are rather simple. One of the earliest and simplest is
called ASCII text. ASCII (pronounced "As-Key") is short for American Standard
Code for Information Interchange. This is a simple encoding scheme that was first
used on Teletype machines to map keyboard characters to numbers.

Text is a simple one-to-one mapping of characters to numbers. It is very compact.
Fifty characters of text translates to fifty bytes of data. It is important to
understand that text only contains a simple mapping of characters to numbers. It
is not the same as a word processor document such as one created by Microsoft
Word or OpenOffice.org Writer. Those files, in contrast to simple ASCII text,

24

The less program provides a

Viewing File Contents With less

contain many non-text elements that are used to describe its structure and
formatting. Plain ASCII text files contain only the characters themselves and a
few rudimentary control codes like tabs, carriage returns and line feeds.

Throughout a Linux system, many files are stored in text format and there are
many Linux tools that work with text files. Even Windows recognizes the
importance of this format. The well-known NOTEPAD.EXE program is an editor
for plain ASCII text files.

Why would we want to examine text files? Because many of the files that contain system
settings (called configuration files) are stored in this format, and being able to read them
gives us insight about how the system works. In addition, many of the actual programs
that the system uses (called scripts) are stored in this format. In later chapters, we will
learn how to edit text files in order to modify systems settings and write our own scripts,
but for now we will just look at their contents.

The 1less command is used like this:

less filename

Once started, the 1ess program allows you to scroll forward and backward through a
text file. For example, to examine the file that defines all the system's user accounts,
enter the following command:

[me@linuxbox ~]$ less /etc/passwd

Once the 1ess program starts, we may view the contents of the file. If the file is longer
than one page, we can scroll up and down. To exit 1ess, press the “q” key.

The table below lists the most common keyboard commands used by less.

Table 4-3: less Commands

Command Action

Page Up or b Scroll back one page
Page Down or space Scroll forward one page
Up Arrow Scroll up one line

25

4 — Exploring The System

Down Arrow Scroll down one line

G Move to the end of the text file

1Gorg Move to the beginning of the text file

/characters Search forward to the next occurrence of characters
n Search for the next occurrence of the previous search
h Display help screen

q Quit 1ess

Less Is More

The less program was designed as an improved replacement of an earlier Unix
program called more. The name “less” is a play on the phrase “less is more” —a
motto of modernist architects and designers.

less falls into the class of programs called “pagers,” programs that allow the
easy viewing of long text documents in a page by page manner. Whereas the
more program could only page forward, the 1ess program allows paging both
forward and backward and has many other features as well.

A Guided Tour

The file system layout on your Linux system is much like that found on other Unix-like
systems. The design is actually specified in a published standard called the Linux
Filesystem Hierarchy Standard. Not all Linux distributions conform to the standard
exactly but most come pretty close.

Next, we are going to wander around the file system ourselves to see what makes our
Linux system tick. This will give you a chance to practice your navigation skills. One of
the things we will discover is that many of the interesting files are in plain human-
readable text. As we go about our tour, try the following:

1. cd into a given directory

2. List the directory contents with 1s -1

3. If you see an interesting file, determine its contents with file
4

If it looks like it might be text, try viewing it with 1ess

26

A Guided Tour

Remember the copy and paste trick! If you are using a mouse, you can double
click on a filename to copy it and middle click to paste it into commands.

As we wander around, don't be afraid to look at stuff. Regular users are largely
prohibited from messing things up. That's the system administrators job! If a command
complains about something, just move on to something else. Spend some time looking
around. The system is ours to explore. Remember, in Linux, there are no secrets!

Table 4-4 lists just a few of the directories we can explore. Feel free to try more!

Table 4-4: Directories Found On Linux Systems

Directory Comments

/ The root directory. Where everything begins.

/bin Contains binaries (programs) that must be present for the
system to boot and run.

/boot Contains the Linux kernel, initial RAM disk image (for

drivers needed at boot time), and the boot loader.

Interesting files:
e /boot/grub/grub.conf ormenu.lst, which
are used to configure the boot loader.
e /boot/vmlinuz, the linux kernel

/dev This is a special directory which contains device nodes.
“Everything is a file” also applies to devices. Here is where
the kernel maintains a list of all the devices it understands.

/etc The /etc directory contains all of the system-wide
configuration files. It also contains a collection of shell
scripts which start each of the system services at boot time.
Everything in this directory should be readable text.

Interesting files: While everything in /etc is interesting,
here are some of my all-time favorites:
e /etc/crontab, a file that defines when
automated jobs will run.
e /etc/fstab, atable of storage devices and their
associated mount points.
e /etc/passwd, a list of the user accounts.

27

4 — Exploring The System

Directory
/home

/1ib

/lost+found

/media

/mnt

/opt

/proc

/root

/sbin

/tmp

Comments

In normal configurations, each user is given a directory in
/home. Ordinary users can only write files in their home
directories. This limitation protects the system from errant
user activity.

Contains shared library files used by the core system
programs. These are similar to DLLs in Windows.

Each formatted partition or device using a Linux file system,
such as ext3, will have this directory. It is used in the case
of a partial recovery from a file system corruption event.
Unless something really bad has happened to your system,
this directory will remain empty.

On modern Linux systems the /media directory will
contain the mount points for removable media such USB
drives, CD-ROMs, etc. that are mounted automatically at
insertion.

On older Linux systems, the /mnt directory contains mount
points for removable devices that have been mounted
manually.

The /opt directory is used to install “optional” software.
This is mainly used to hold commercial software products
that may be installed on your system.

The /proc directory is special. It's not a real file system in
the sense of files stored on your hard drive. Rather, it is a
virtual file system maintained by the Linux kernel. The
“files” it contains are peepholes into the kernel itself. The
files are readable and will give you a picture of how the
kernel sees your computer.

This is the home directory for the root account.

This directory contains “system” binaries. These are
programs that perform vital system tasks that are generally
reserved for the superuser.

The /tmp directory is intended for storage of temporary,
transient files created by various programs. Some
configurations cause this directory to be emptied each time
the system is rebooted.

28

A Guided Tour

Directory
/usr

/usr/bin

/usr/1lib

/usr/local

/usr/sbin

/usr/share

/usr/share/doc

/var

/var/log

Symbolic Links

Comments

The /usr directory tree is likely the largest one on a Linux
system. It contains all the programs and support files used
by regular users.

/usr/bin contains the executable programs installed by
your Linux distribution. It is not uncommon for this
directory to hold thousands of programs.

The shared libraries for the programs in /usr/bin.

The /usr/1local tree is where programs that are not
included with your distribution but are intended for system-
wide use are installed. Programs compiled from source code
are normally installed in /usr/local/bin. On a newly
installed Linux system, this tree exists, but it will be empty
until the system administrator puts something in it.

Contains more system administration programs.

/usr/share contains all the shared data used by
programs in /usr/bin. This includes things like default
configuration files, icons, screen backgrounds, sound files,
etc.

Most packages installed on the system will include some
kind of documentation. In /usr/share/doc, we will
find documentation files organized by package.

With the exception of /tmp and /home, the directories we
have looked at so far remain relatively static, that is, their
contents don't change. The /var directory tree is where
data that is likely to change is stored. Various databases,
spool files, user mail, etc. are located here.

/var/1log contains log files, records of various system
activity. These are very important and should be monitored
from time to time. The most useful one is
/var/log/messages. Note that for security reasons on
some systems, you must be the superuser to view log files .

As we look around, we are likely to see a directory listing with an entry like this:

29

4 — Exploring The System

lrwxrwxrwx 1 root root 11 2007-08-11 07:34 libc.so.6 -> libc-2.6.so0

Notice how the first letter of the listing is “1” and the entry seems to have two filenames?
This is a special kind of a file called a symbolic link (also known as a soft link or
symlink.) In most Unix-like systems it is possible to have a file referenced by multiple
names. While the value of this may not be obvious, it is really a useful feature.

Picture this scenario: a program requires the use of a shared resource of some kind
contained in a file named “foo,” but “foo” has frequent version changes. It would be
good to include the version number in the filename so the administrator or other
interested party could see what version of “foo” is installed. This presents a problem. If
we change the name of the shared resource, we have to track down every program that
might use it and change it to look for a new resource name every time a new version of
the resource is installed. That doesn't sound like fun at all.

Here is where symbolic links save the day. Let's say we install version 2.6 of “foo,”
which has the filename “fo0-2.6” and then create a symbolic link simply called “foo” that
points to “foo-2.6.” This means that when a program opens the file “foo”, it is actually
opening the file “foo-2.6”. Now everybody is happy. The programs that rely on “foo”
can find it and we can still see what actual version is installed. When it is time to
upgrade to “foo-2.7,” we just add the file to our system, delete the symbolic link “foo”
and create a new one that points to the new version. Not only does this solve the problem
of the version upgrade, but it also allows us to keep both versions on our machine.
Imagine that “foo-2.7” has a bug (damn those developers!) and we need to revert to the
old version. Again, we just delete the symbolic link pointing to the new version and
create a new symbolic link pointing to the old version.

The directory listing above (from the /1ib directory of a Fedora system) shows a
symbolic link called “libc.so.6” that points to a shared library file called “libc-2.6.s0.”
This means that programs looking for “libc.s0.6” will actually get the file “libc-2.6.s0.”
We will learn how to create symbolic links in the next chapter.

Hard Links

While we are on the subject of links, we need to mention that there is a second type of
link called a hard link. Hard links also allow files to have multiple names, but they do it
in a different way. We’ll talk more about the differences between symbolic and hard
links in the next chapter.

Further Reading

e The full version of the Linux Filesystem Hierarchy Standard can be found here:
http://www.pathname.com/fhs/

30

http://www.pathname.com/fhs/

5 — Manipulating Files And Directories

5 — Manipulating Files And Directories

At this point, we are ready for some real work! This chapter will introduce the following
commands:

e cCp — Copy files and directories

e MV — Move/rename files and directories
e mkdir — Create directories

e rm—Remove files and directories

e 1n — Create hard and symbolic links

These five commands are among the most frequently used Linux commands. They are
used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are more easily done
with a graphical file manager. With a file manager, we can drag and drop a file from one
directory to another, cut and paste files, delete files, etc. So why use these old command
line programs?

The answer is power and flexibility. While it is easy to perform simple file manipulations
with a graphical file manager, complicated tasks can be easier with the command line
programs. For example, how could we copy all the HTML files from one directory to
another, but only copy files that do not exist in the destination directory or are newer than
the versions in the destination directory? Pretty hard with with a file manager. Pretty easy
with the command line:

cp -u *.html destination

Wildcards

Before we begin using our commands, we need to talk about a shell feature that makes
these commands so powerful. Since the shell uses filenames so much, it provides special
characters to help you rapidly specify groups of filenames. These special characters are

31

5 — Manipulating Files And Directories

called wildcards. Using wildcards (which is also known as globbing) allow you to select
filenames based on patterns of characters. The table below lists the wildcards and what
they select:

Table 5-1: Wildcards

Wildcard Meaning

* Matches any characters

? Matches any single character

[characters] Matches any character that is a member of the set characters

[!characters] Matches any character that is not a member of the set
characters

[[:class:]] Matches any character that is a member of the specified
class

Table 5-2 lists the most commonly used character classes:

Table 5-2: Commonly Used Character Classes

Character Class Meaning

[:alnum:] Matches any alphanumeric character
[:alpha:] Matches any alphabetic character
[:digit:] Matches any numeral

[:lower:] Matches any lowercase letter
[:upper:] Matches any uppercase letter

Using wildcards makes it possible to construct very sophisticated selection criteria for
filenames. Here are some examples of patterns and what they match:

Table 5-3: Wildcard Examples

Pattern Matches

* All files

g* Any file beginning with “g”

b*.txt Any file beginning with “b” followed by

any characters and ending with “.txt”

32

Wildcards

Data??? Any file beginning with “Data” followed
by exactly three characters

[abc]™ Any file beginning with either an “a”, a
‘{b”, Or a “C”

BACKUP.[0-9][0-9][0-9] Any file beginning with “BACKUP.”
followed by exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[!'[:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or

the numerals “1”, “2”, or “3”

Wildcards can be used with any command that accepts filenames as arguments, but we’ll
talk more about that in Chapter 8.

Character Ranges

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] or the
[a-z] character range notations. These are traditional Unix notations and
worked in older versions of Linux as well. They can still work, but you have to
be very careful with them because they will not produce the expected results
unless properly configured. For now, you should avoid using them and use
character classes instead.

Wildcards Work In The GUI Too

Wildcards are especially valuable not only because they are used so frequently on
the command line, but are also supported by some graphical file managers.

e In Nautilus (the file manager for GNOME), you can select files using the
Edit/Select Pattern menu item. Just enter a file selection pattern with
wildcards and the files in the currently viewed directory will be highlighted
for selection.

e In Dolphin and Konqueror (the file managers for KDE), you can enter
wildcards directly on the location bar. For example, if you want to see all the
files starting with a lowercase “u” in the /usr/bin directory, type “/usr/bin/u*”
into the location bar and it will display the result.

33

5 — Manipulating Files And Directories

Many ideas originally found in the command line interface make their way into
the graphical interface, too. It is one of the many things that make the Linux
desktop so powerful.

mkdir - Create Directories

The mkdir command is used to create directories. It works like this:

mkdir directory. ..

A note on notation: When three periods follow an argument in the description of a
command (as above), it means that the argument can be repeated, thus:

mkdir diril

would create a single directory named “dirl”, while

mkdir dirl dir2 dir3

would create three directories named “dir1”, “dir2”, and “dir3”.

cp — Copy Files And Directories

The cp command copies files or directories. It can be used two different ways:

cp item1 item2

to copy the single file or directory “item1” to file or directory “item2” and:

cp item... directory

to copy multiple items (either files or directories) into a directory.

34

cp — Copy Files And Directories

Useful Options And Examples

Here are some of the commonly used options (the short option and the equivalent long

option) for cp:

Table 5-4: cp Options

Option
-a, --archive

-i, --interactive

-r, --recursive

-u, --update

-v, --verbose

Table 5-5: cp Examples

Command
cp filel file2

cp -1 filel file2
cp filel file2 dirl

cp dirl/* dir2

Meaning

Copy the files and directories and all of their attributes,
including ownerships and permissions. Normally,
copies take on the default attributes of the user
performing the copy.

Before overwriting an existing file, prompt the user for
confirmation. If this option is not specified, cp will
silently overwrite files.

Recursively copy directories and their contents. This
option (or the -a option) is required when copying
directories.

When copying files from one directory to another, only
copy files that either don't exist, or are newer than the
existing corresponding files, in the destination
directory.

Display informative messages as the copy is
performed.

Results

Copy filel to file2. If file2 exists, it is overwritten
with the contents of filel. If file2 does not exist, it
is created.

Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

Copy filel and file2 into directory dirl. dirl must
already exist.

Using a wildcard, all the files in dir1 are copied
into dir2. dir2 must already exist.

35

5 — Manipulating Files And Directories

cp -r dirl dir2 Copy the contents of directory dir1 to directory
dir2. 1f directory dir2 does not exist, it is created
and, after the copy, will contain the same contents
as directory dirl.
If directory dir2 does exist, then directory dirl (and
its contents) will be copied into dir2.

mv — Move And Rename Files

The mv command performs both file moving and file renaming, depending on how it is
used. In either case, the original filename no longer exists after the operation. mv is used
in much the same way as cp:

mv iteml item2

to move or rename file or directory “item1” to “item2” or:

mv item... directory

to move one or more items from one directory to another.

Useful Options And Examples

mv shares many of the same options as Cp:

Table 5-6: mv Options
Option Meaning

-1, --interactive Before overwriting an existing file, prompt the user for
confirmation. If this option is not specified, mv will
silently overwrite files.

-u, --update When moving files from one directory to another, only
move files that either don't exist, or are newer than the
existing corresponding files in the destination
directory.

-v, --verbose Display informative messages as the move is

36

mv — Move And Rename Files

Table 5-7: mv Examples

Command
mv filel file2

mv -i filel file2

mv filel file2 diri

mv dirl dir2

performed.

Results

Move filel to file2. If file2 exists, it is overwritten
with the contents of filel. If file2 does not exist, it
is created. In either case, filel ceases to exist.

Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

Move filel and file2 into directory dirl. dirl must
already exist.

If directory dir2 does not exist, create directory
dir2 and move the contents of directory dirl into
dir2 and delete directory dirl.

If directory dir2 does exist, move directory dir1l
(and its contents) into directory dir2.

rm — Remove Files And Directories

The rm command is used to remove (delete) files and directories:

rm item. ..

where “item” is one or more files or directories.

Useful Options And Examples

Here are some of the common options for rm:

Table 5-8: rm Options

Option
-i, --interactive

Meaning

Before deleting an existing file, prompt the user for
confirmation. If this option is not specified, rm will
silently delete files.

37

5 — Manipulating Files And Directories

-r, --recursive Recursively delete directories. This means that if a

directory being deleted has subdirectories, delete them
too. To delete a directory, this option must be

specified.

-f, --force Ignore nonexistent files and do not prompt. This
overrides the - -interactive option.

-v, --verbose Display informative messages as the deletion is
performed.

Table 5-9: rm Examples

Command Results

rm filel Delete filel silently.

rm -1 filel Same as above, except that the user is prompted for
confirmation before the deletion is performed.

rm -r filel dirl Delete filel and dir1 and its contents.

rm -rf filel dirl Same as above, except that if either filel or dirl do

not exist, rm will continue silently.

Be Careful With rm!

Unix-like operating systems such as Linux do not have an undelete command.
Once you delete something with rm, it's gone. Linux assumes you're smart and
you know what you're doing.

Be particularly careful with wildcards. Consider this classic example. Let's say
you want to delete just the HTML files in a directory. To do this, you type:

rm *.html

which is correct, but if you accidentally place a space between the “*” and the
“.html” like so:

rm * .html

the rm command will delete all the files in the directory and then complain that
there is no file called “.html”.

38

rm — Remove Files And Directories

Here is a useful tip. Whenever you use wildcards with rm (besides carefully
checking your typing!), test the wildcard first with 1s. This will let you see the
files that will be deleted. Then press the up arrow key to recall the command and
replace the 1s with rm.

1n - Create Links

The 1n command is used to create either hard or symbolic links. It is used in one of two
ways:

1n file 1link

to create a hard link, and:

In -s item link

to create a symbolic link where “item” is either a file or a directory.

Hard Links

Hard links are the original Unix way of creating links, compared to symbolic links, which
are more modern. By default, every file has a single hard link that gives the file its name.
When we create a hard link, we create an additional directory entry for a file. Hard links
have two important limitations:

1. A hard link cannot reference a file outside its own file system. This means a link
may not reference a file that is not on the same disk partition as the link itself.

2. A hard link may not reference a directory.

A hard link is indistinguishable from the file itself. Unlike a symbolic link, when you list
a directory containing a hard link you will see no special indication of the link. When a
hard link is deleted, the link is removed but the contents of the file itself continue to exist
(that is, its space is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter them from time to
time, but modern practice prefers symbolic links, which we will cover next.

39

5 — Manipulating Files And Directories

Symbolic Links

Symbolic links were created to overcome the limitations of hard links. Symbolic links
work by creating a special type of file that contains a text pointer to the referenced file or
directory. In this regard, they operate in much the same way as a Windows shortcut
though of course, they predate the Windows feature by many years ;-)

A file pointed to by a symbolic link, and the symbolic link itself are largely
indistinguishable from one another. For example, if you write some something to the
symbolic link, the referenced file is also written to. However when you delete a symbolic
link, only the link is deleted, not the file itself. If the file is deleted before the symbolic
link, the link will continue to exist, but will point to nothing. In this case, the link is said
to be broken. In many implementations, the 1S command will display broken links in a
distinguishing color, such as red, to reveal their presence.

The concept of links can seem very confusing, but hang in there. We're going to try all
this stuff and it will, hopefully, become clear.

Let's Build A Playground

Since we are going to do some real file manipulation, let's build a safe place to “play”
with our file manipulation commands. First we need a directory to work in. We'll create
one in our home directory and call it “playground.”

Creating Directories

The mkdir command is used to create a directory. To create our playground directory
we will first make sure we are in our home directory and will then create the new
directory:

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make our playground a little more interesting, let's create a couple of directories inside
it called “dir1” and “dir2”. To do this, we will change our current working directory to
playground and execute another mkdir:

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dirl dir2

Notice that the mkdir command will accept multiple arguments allowing us to create

40

Let's Build A Playground

both directories with a single command.

Copying Files

Next, let's get some data into our playground. We'll do this by copying a file. Using the
cp command, we'll copy the passwd file from the /etc directory to the current
working directory:

[me@linuxbox playground]$ cp /etc/passwd .

Notice how we used the shorthand for the current working directory, the single trailing
period. So now if we perform an 1s, we will see our file:

[me@linuxbox playground]$ 1ls -1

total 12

drwxrwxr-x 2 me me 4096 2008-01-10 16:40 dirl
drwxrwxr-x 2 me me 4096 2008-01-10 16:40 dir2
-rw-r--r-- 1 me me 1650 2008-01-10 16:07 passwd

Now, just for fun, let's repeat the copy using the “-v” option (verbose) to see what it does:

[me@linuxbox playground]$ cp -v /etc/passwd .
“/etc/passwd' -> " ./passwd'’

The cp command performed the copy again, but this time displayed a concise message
indicating what operation it was performing. Notice that cp overwrote the first copy
without any warning. Again this is a case of cp assuming that you know what you’re are
doing. To get a warning, we'll include the “-i” (interactive) option:

cp: overwrite °./passwd'?

[me@linuxbox playground]$ cp -i /etc/passwd .

Responding to the prompt by entering a “y” will cause the file to be overwritten, any
other character (for example, “n”) will cause cp to leave the file alone.

41

5 — Manipulating Files And Directories

Moving And Renaming Files

Now, the name “passwd” doesn't seem very playful and this is a playground, so let's
change it to something else:

[me@linuxbox playground]$ mv passwd fun

Let's pass the fun around a little by moving our renamed file to each of the directories and
back again:

[me@linuxbox playground]$ mv fun diril

to move it first to directory dir1, then:

[me@linuxbox playground]$ mv dirl/fun dir2

to move it from dirl to dir2, then:

[me@linuxbox playground]$ mv dir2/fun .

[me@linuxbox playground]$ mv fun diri

then move dirl into dir2 and confirm it with 1S:

[me@linuxbox playground]$ mv dirl dir2
[me@linuxbox playground]$ 1ls -1 dir2

total 4

drwxrwxr-x 2 me me 4096 2008-01-11 06:06 dirl
[me@linuxbox playground]$ 1s -1 dir2/dir1

total 4

-rw-r--r-- 1 me me 1650 2008-01-10 16:33 fun

to finally bringing it back to the current working directory. Next, let's see the effect of mv
on directories. First we will move our data file into dir1 again:

42

Let's Build A Playground

Note that since dir2 already existed, mv moved dirl into dir2. If dir2 had not
existed, mv would have renamed dirl to dir2. Lastly, let's put everything back:

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv diri/fun .

Creating Hard Links

Now we'll try some links. First the hard links. We’ll create some links to our data file
like so:

[me@linuxbox playground]$ 1n fun fun-hard
[me@linuxbox playground]$ 1n fun diri1/fun-hard
[me@linuxbox playground]$ 1n fun dir2/fun-hard

So now we have four instances of the file “fun”. Let's take a look our playground
directory:

[me@linuxbox playground]$ 1ls -1

total 16

drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir1l
drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir2
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard

One thing you notice is that the second field in the listing for fun and fun-hard both
contain a “4” which is the number of hard links that now exist for the file. You'll
remember that a file will aways have at least one because the file's name is created by a
link. So, how do we know that fun and fun-hard are, in fact, the same file? In this
case, 1s is not very helpful. While we can see that fun and fun-hard are both the
same size (field 5), our listing provides no way to be sure. To solve this problem, we're
going to have to dig a little deeper.

When thinking about hard links, it is helpful to imagine that files are made up of two
parts: the data part containing the file's contents and the name part which holds the file's
name. When we create hard links, we are actually creating additional name parts that all
refer to the same data part. The system assigns a chain of disk blocks to what is called an
inode, which is then associated with the name part. Each hard link therefore refers to a
specific inode containing the file's contents.

43

5 — Manipulating Files And Directories

€& 319

The 1s command has a way to reveal this information. It is invoked with the “-i” option:

[me@linuxbox playground]$ 1ls -1i

total 16

12353539 drwxrwxr-x 2 me me 4096 2008-01-14 16:17 diril
12353540 drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir2
12353538 -rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun
12353538 -rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number and, as we can see, both
fun and fun-hard share the same inode number, which confirms they are the same

file.

Creating Symbolic Links

Symbolic links were created to overcome the two disadvantages of hard links: hard links
cannot span physical devices and hard links cannot reference directories, only files.
Symbolic links are a special type of file that contains a text pointer to the target file or
directory.

Creating symbolic links is similar to creating hard links:

[me@linuxbox playground]$ 1ln -s fun fun-sym
[me@linuxbox playground]$ 1ln -s ../fun diri1/fun-sym
[me@linuxbox playground]$ 1n -s ../fun dir2/fun-sym

The first example is pretty straightforward, we simply add the “-s” option to create a
symbolic link rather than a hard link. But what about the next two? Remember, when we
create a symbolic link, we are creating a text description of where the target file is
relative to the symbolic link. It's easier to see if we look at the 1S output:

[me@linuxbox playground]$ 1s -1 dir1l

total 4
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard
Irwxrwxrwx 1 me me 6 2008-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dirl shows that is it a symbolic link by the leading “1” in
the first field and that it points to “../fun”, which is correct. Relative to the location of
fun-sym, fun is in the directory above it. Notice too, that the length of the symbolic
link file is 6, the number of characters in the string “../fun” rather than the length of the

44

Let's Build A Playground

file to which it is pointing.

When creating symbolic links, you can either use absolute pathnames:

In -s /home/me/playground/fun dirl/fun-sym

or relative pathnames, as we did in our earlier example. Using relative pathnames is
more desirable because it allows a directory containing symbolic links to be renamed
and/or moved without breaking the links.

In addition to regular files, symbolic links can also reference directories:

[me@linuxbox playground]$ 1ln -s dirl dirl-sym

[me@linuxbox playground]$ 1s -1

total 16

drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1l

lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dirl-sym -> dir1l
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2

-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun

-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard
Irwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

Removing Files And Directories

As we covered earlier, the rm command is used to delete files and directories. We are
going to use it to clean up our playground a little bit. First, let's delete one of our hard
links:

[me@linuxbox playground]$ rm fun-hard

[me@linuxbox playground]$ 1s -1

total 12

drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1l

Irwxrwxrwx 1 me me 4 2008-01-16 14:45 dirl-sym -> dir1l
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2

-rw-r--r-- 3 me me 1650 2008-01-10 16:33 fun

Irwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count shown for fun
is reduced from four to three, as indicated in the second field of the directory listing.
Next, we'll delete the file fun, and just for enjoyment, we'll include the “-i” option to

show what that does:

45

5 — Manipulating Files And Directories

[me@linuxbox playground]$ rm -i fun
rm: remove regular file “fun'?

Enter “y” at the prompt and the file is deleted. But let's look at the output of 1S now.
Noticed what happened to fun-sym? Since it's a symbolic link pointing to a now-

nonexistent file, the link is broken:

[me@linuxbox playground]$ 1s -1

total 8

drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1l

lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dirl-sym -> dir1l
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2

lrwxrwxrwx 1 me me 3 2008-01-15 15:15 ->

Most Linux distributions configure 1s to display broken links. On a Fedora box, broken
links are displayed in blinking red text! The presence of a broken link is not, in and of
itself dangerous but it is rather messy. If we try to use a broken link we will see this:

[me@linuxbox playground]$ less fun-sym
fun-sym: No such file or directory

Let's clean up a little. We'll delete the symbolic links:

[me@linuxbox playground]$ rm fun-sym dirl-sym
[me@linuxbox playground]$ 1s -1

total 8

drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1l
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2

One thing to remember about symbolic links is that most file operations are carried out
on the link's target, not the link itself. rm is an exception. When you delete a link, it is

the link that is deleted, not the target.

Finally, we will remove our playground. To do this, we will return to our home directory
and use rm with the recursive option (-r) to delete playground and all of its contents,

including its subdirectories:

[me@linuxbox playground]$ cd

46

Let's Build A Playground

[me@linuxbox ~]$ rm -r playground

Creating Symlinks With The GUI

The file managers in both GNOME and KDE provide an easy and automatic
method of creating symbolic links. With GNOME, holding the Ctrl+Shift keys
while dragging a file will create a link rather than copying (or moving) the file.
In KDE, a small menu appears whenever a file is dropped, offering a choice of
copying, moving, or linking the file.

Summing Up

We've covered a lot of ground here and it will take a while to fully sink in. Perform the
playground exercise over and over until it makes sense. It is important to get a good
understanding of basic file manipulation commands and wildcards. Feel free to expand
on the playground exercise by adding more files and directories, using wildcards to
specify files for various operations. The concept of links is a little confusing at first, but
take the time to learn how they work. They can be a real lifesaver.

47

6 — Working With Commands

6 - Working With Commands

Up to this point, we have seen a series of mysterious commands, each with its own
mysterious options and arguments. In this chapter, we will attempt to remove some of
that mystery and even create some of our own commands. The commands introduced in
this chapter are:

type — Indicate how a command name is interpreted

which — Display which executable program will be executed
man — Display a command's manual page

apropos — Display a list of appropriate commands

info - Display a command's info entry

whatis — Display a very brief description of a command

alias — Create an alias for a command

What Exactly Are Commands?

A command can be one of four different things:

1.

An executable program like all those files we saw in /usr/bin. Within this
category, programs can be compiled binaries such as programs written in C and
C++, or programs written in scripting languages such as the shell, perl, python,
ruby, etc.

A command built into the shell itself. bash supports a number of commands
internally called shell builtins. The cd command, for example, is a shell builtin.

A shell function. These are miniature shell scripts incorporated into the
environment. We will cover configuring the environment and writing shell
functions in later chapters, but for now, just be aware that they exist.

An alias. Commands that we can define ourselves, built from other commands.

48

Identifying Commands

Identifying Commands

It is often useful to know exactly which of the four kinds of commands is being used and
Linux provides a couple of ways to find out.

type — Display A Command's Type

The type command is a shell builtin that displays the kind of command the shell will
execute, given a particular command name. It works like this:

type command

where “command” is the name of the command you want to examine. Here are some
examples:

[me@linuxbox ~]$ type type

type is a shell builtin
[me@linuxbox ~]1$ type 1s

1s is aliased to "1ls --color=tty'
[me@linuxbox ~]$ type cp

cp is /bin/cp

Here we see the results for three different commands. Notice that the one for 1s (taken
from a Fedora system) and how the 1s command is actually an alias for the 1S command
with the “-- color=tty” option added. Now we know why the output from 1s is displayed
in color!

which — Display An Executable's Location

Sometimes there is more than one version of an executable program installed on a
system. While this is not very common on desktop systems, it's not unusual on large
servers. To determine the exact location of a given executable, the which command is

used:

[me@linuxbox ~]$ which 1s
/bin/1s

which only works for executable programs, not builtins nor aliases that are substitutes
for actual executable programs. When we try to use which on a shell builtin, for

49

6 — Working With Commands

example, cd, we either get no response or an error message:

[me@linuxbox ~]$ which cd

/usr/bin/which: no cd 1in
(/opt/jrel.6.0_03/bin:/usr/1ib/qt-3.3/bin:/usr/kerberos/bin:/opt/jrel
.6.0_03/bin:/usr/lib/ccache:/usr/local/bin:/usr/bin:/bin:/home/me/bin

)
which is a fancy way of saying “command not found.”

Getting A Command's Documentation

With this knowledge of what a command is, we can now search for the documentation
available for each kind of command.

help — Get Help For Shell Builtins

bash has a built-in help facility available for each of the shell builtins. To use it, type
“help” followed by the name of the shell builtin. For example:

[me@linuxbox ~1%$ help cd

cd: cd [-L|-P] [dir]

Change the current directory to DIR. The variable $HOME is the
default DIR. The variable CDPATH defines the search path for the
directory containing DIR. Alternative directory names in CDPATH are
separated by a colon (:). A null directory name is the same as the
current directory, i.e. ~.'. If DIR begins with a slash (/), then
CDPATH is not used. If the directory is not found, and the shell
option “cdable_vars' is set, then try the word as a variable name.
If that variable has a value, then cd to the value of that variable.
The -P option says to use the physical directory structure instead of
following symbolic links; the -L option forces symbolic links to be
followed.

A note on notation: When square brackets appear in the description of a command's
syntax, they indicate optional items. A vertical bar character indicates mutually exclusive
items. In the case of the cd command above:

cd [-L|-P] [dir]

This notation says that the command cd may be followed optionally by either a “-L” or a
“-P” and further, optionally followed by the argument “dir”.

While the output of help for the cd commands is concise and accurate, it is by no

50

Getting A Command's Documentation

means tutorial and as we can see, it also seems to mention a lot of things we haven't
talked about yet! Don't worry. We'll get there.

- -help — Display Usage Information

Many executable programs support a “--help” option that displays a description of the
command's supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

-Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options
too.

-m, --mode=MODE set file mode (as in chmod), not a=rwx - umask

-p, --parents no error if existing, make parent directories as
needed
-V, --verbose print a message for each created directory
--help display this help and exit
--version output version information and exit

Report bugs to <bug-coreutils@gnu.org>.

Some programs don't support the “--help” option, but try it anyway. Often it results in an
error message that will reveal the same usage information.

man — Display A Program's Manual Page

Most executable programs intended for command line use provide a formal piece of
documentation called a manual or man page. A special paging program called man is
used to view them. It is used like this:

man program

where “program” is the name of the command to view.

Man pages vary somewhat in format but generally contain a title, a synopsis of the
command's syntax, a description of the command's purpose, and a listing and description
of each of the command's options. Man pages, however, do not usually include
examples, and are intended as a reference, not a tutorial. As an example, let's try viewing

51

6 — Working With Commands

the man page for the 1S command:

[me@linuxbox ~]$ man 1s

On most Linux systems, man uses 1ess to display the manual page, so all of the familiar
less commands work while displaying the page.

The “manual” that man displays is broken into sections and not only covers user
commands but also system administration commands, programming interfaces, file
formats and more. The table below describes the layout of the manual:

Table 6-1: Man Page Organization

Section Contents
User commands
Programming interfaces kernel system calls
Programming interfaces to the C library
Special files such as device nodes and drivers
File formats
Games and amusements such as screen savers

Miscellaneous

o N o kAW N

System administration commands

Sometimes we need to look in a specific section of the manual to find what we are
looking for. This is particularly true if we are looking for a file format that is also the
name of a command. Without specifying a section number, we will always get the first
instance of a match, probably in section 1. To specify a section number, we use man like
this:

man section search_term

For example:

[me@linuxbox ~]$ man 5 passwd

52

Getting A Command's Documentation

This will display the man page describing the file format of the /etc/passwd file.

apropos — Display Appropriate Commands

It is also possible to search the list of man pages for possible matches based on a search
term. It's very crude but sometimes helpful. Here is an example of a search for man
pages using the search term “floppy”:

[me@linuxbox ~]$ apropos floppy

create_floppy_devices (8) - udev callout to create all possible
floppy device based on the CMOS type

fdformat (8) - Low-level formats a floppy disk

floppy (8) - format floppy disks

gfloppy (1) - a simple floppy formatter for the GNOME

mbadblocks (1) - tests a floppy disk, and marks the bad
blocks in the FAT

mformat (1) - add an MSDOS filesystem to a low-level
formatted floppy disk

The first field in each line of output is the name of the man page, the second field shows
the section. Note that the man command with the “-k” option performs the exact same
function as apropos.

whatis — Display A Very Brief Description Of A Command

The whatis program displays the name and a one line description of a man page
matching a specified keyword:

[me@linuxbox ~]$ whatis 1s
1s (1) - list directory contents

The Most Brutal Man Page Of Them All

As we have seen, the manual pages supplied with Linux and other Unix-like
systems are intended as reference documentation and not as tutorials. Many man
pages are hard to read, but I think that the grand prize for difficulty has got to go
to the man page for bash. As I was doing my research for this book, I gave it
careful review to ensure that I was covering most of its topics. When printed, it's

53

6 — Working With Commands

over eighty pages long and extremely dense, and its structure makes absolutely no
sense to a new user.

On the other hand, it is very accurate and concise, as well as being extremely
complete. So check it out if you dare and look forward to the day when you can
read it and it all makes sense.

info — Display A Program's Info Entry

The GNU Project provides an alternative to man pages for their programs, called “info.”
Info pages are displayed with a reader program named, appropriately enough, info.
Info pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: 1ls invocation, Next: dir invocation,
Up: Directory listing

10.1 “1s': List directory contents

The “1s' program lists information about files (of any type,
including directories). Options and file arguments can be intermixed
arbitrarily, as usual.

For non-option command-line arguments that are directories, by
default “1s' lists the contents of directories, not recursively, and
omitting files with names beginning with “.'. For other non-option
arguments, by default “1s' lists just the filename. If no non-option
argument is specified, “1ls' operates on the current directory, acting
as if it had been invoked with a single argument of ~.'

By default, the output is sorted alphabetically, according to the

--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top

The info program reads info files, which are tree structured into individual nodes, each
containing a single topic. Info files contain hyperlinks that can move you from node to
node. A hyperlink can be identified by its leading asterisk, and is activated by placing the
cursor upon it and pressing the enter key.

54

Getting A Command's Documentation

To invoke info, type “info” followed optionally by the name of a program. Below is a
table of commands used to control the reader while displaying an info page:

Table 6-2: info Commands
Command Action
? Display command help

PgUp or Backspace Display previous page

PgDn or Space Display next page

n Next - Display the next node

p Previous - Display the previous node

u Up - Display the parent node of the currently displayed
node, usually a menu.

Enter Follow the hyperlink at the cursor location

q Quit

Most of the command line programs we have discussed so far are part of the GNU
Project's “coreutils” package, so typing:

[me@linuxbox ~]$ info coreutils

will display a menu page with hyperlinks to each program contained in the coreutils
package.

README And Other Program Documentation Files

Many software packages installed on your system have documentation files residing in
the /usr/share/doc directory. Most of these are stored in plain text format and can
be viewed with 1ess. Some of the files are in HTML format and can be viewed with a
web browser. We may encounter some files ending with a “.gz” extension. This
indicates that they have been compressed with the gzip compression program. The gzip
package includes a special version of 1ess called z1less that will display the contents
of gzip-compressed text files.

55

6 — Working With Commands

Creating Your Own Commands With alias

Now for our very first experience with programming! We will create a command of our
own using the alias command. But before we start, we need to reveal a small
command line trick. It's possible to put more than one command on a line by separating
each command with a semicolon character. It works like this:

commandl; command2; command3. ..

Here's the example we will use:

[me@linuxbox ~]$ cd /usr; 1s; cd -

bin games kerberos 1ib64 local share tmp
etc include 1lib libexec sbin src
/home/me

[me@linuxbox ~]$%$

As we can see, we have combined three commands on one line. First we change
directory to /usr then list the directory and finally return to the original directory (by
using 'cd -') so we end up where we started. Now let's turn this sequence into a new
command using alias. The first thing we have to do is dream up a name for our new
command. Let's try “test”. Before we do that, it would be a good idea to find out if the
name “test” is already being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

5

Oops! The name “test” is already taken. Let's try “foo”:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

Great! “foo” is not taken. So let's create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; 1s; cd -'

56

Creating Your Own Commands With alias

Notice the structure of this command:

alias name='string'

After the command “alias” we give alias a name followed immediately (no whitespace
allowed) by an equals sign, followed immediately by a quoted string containing the
meaning to be assigned to the name. After we define our alias, it can be used anywhere
the shell would expect a command. Let's try it:

[me@linuxbox ~]$ foo

bin games kerberos 1ib64 local share tmp
etc include 1lib libexec sbin src
/home/me

[me@linuxbox ~]$%$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to "cd /usr; 1ls ; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposefully avoided naming our alias with an existing command name, it is
not uncommon to do so. This is often done to apply a commonly desired option to each
invocation of a common command. For instance, we saw earlier how the 1S command is
often aliased to add color support:

[me@linuxbox ~]$ type 1s
1s is aliased to "1s --color=tty'

To see all the aliases defined in the environment, use the alias command without
arguments. Here are some of the aliases defined by default on a Fedora system. Try and

57

6 — Working With Commands

figure out what they all do:

[me@linuxbox ~]$ alias

alias 1.='1ls -d .* --color=tty'
alias 11='1ls -1 --color=tty'
alias 1ls='ls --color=tty'

There is one tiny problem with defining aliases on the command line. They vanish when
your shell session ends. In a later chapter, we will see how to add our own aliases to the
files that establish the environment each time we log on, but for now, enjoy the fact that
we have taken our first, albeit tiny, step into the world of shell programming!

Revisiting Old Friends

Now that we have learned how to find the documentation for commands, go and look up
the documentation for all the commands we have encountered so far. Study what
additional options are available and try them out!

Further Reading

There are many online sources of documentation for Linux and the command line. Here
are some of the best:

e The Bash Reference Manual is a reference guide to the bash shell. It’s still a
reference work but contains examples and is easier to read than the bash man
page.
http://www.gnu.org/software/bash/manual/bashref.html

e The Bash FAQ contains answers to frequently asked questions regarding bash.
This list is aimed at intermediate to advanced users, but contains a lot of good

information.
http://mywiki.wooledge.org/BashFAQ

e The GNU Project provides extensive documentation for its programs, which form
the core of the Linux command line experience. You can see a complete list here:

http://www.gnu.org/manual/manual.html

e Wikipedia has an interesting article on man pages:
http://en.wikipedia.org/wiki/Man page

58

http://en.wikipedia.org/wiki/Man_page
http://www.gnu.org/manual/manual.html
http://mywiki.wooledge.org/BashFAQ
http://www.gnu.org/software/bash/manual/bashref.html

7 — Redirection

7 — Redirection

In this lesson we are going to unleash what may be the coolest feature of the command
line. It's called I/O redirection. The “I/O” stands for input/output and with this facility
you can redirect the input and output of commands to and from files, as well as connect
multiple commands together into powerful command pipelines. To show off this facility,
we will introduce the following commands:

e cat - Concatenate files

e sort - Sort lines of text

e unig - Report or omit repeated lines

e grep - Print lines matching a pattern

e WC - Print newline, word, and byte counts for each file
e head - Output the first part of a file

e tail - Output the last part of a file

e tee - Read from standard input and write to standard output and files

Standard Input, Output, And Error

Many of the programs that we have used so far produce output of some kind. This output
often consists of two types. First, we have the program's results; that is, the data the
program is designed to produce, and second, we have status and error messages that tell
us how the program is getting along. If we look at a command like 1S, we can see that it
displays its results and its error messages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such as 1s actually send
their results to a special file called standard output (often expressed as stdout) and their
status messages to another file called standard error (stderr). By default, both standard
output and standard error are linked to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard input (stdin) which
is, by default, attached to the keyboard.

59

7 — Redirection

I/O redirection allows us to change where output goes and where input comes from.
Normally, output goes to the screen and input comes from the keyboard, but with I/O
redirection, we can change that.

Redirecting Standard Output

I/O redirection allows us to redefine where standard output goes. To redirect standard
output to another file besides the screen, we use the “>” redirection operator followed by
the name of the file. Why would we want to do this? It's often useful to store the output
of a command in a file. For example, we could tell the shell to send the output of the 1s
command to the file 1s-output . txt instead of the screen:

[me@linuxbox ~]$ 1s -1 /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the results to the file
1s-output. txt. Let's examine the redirected output of the command:

[me@linuxbox ~]$ 1s -1 ls-output.txt
-rw-rw-r-- 1 me me 167878 2008-02-01 15:07 ls-output.txt

Good; a nice, large, text file. If we look at the file with 1ess, we will see that the file
1s-output. txt does indeed contain the results from our 1S command:

[me@linuxbox ~]$ less ls-output.txt

Now, let's repeat our redirection test, but this time with a twist. We'll change the name of
the directory to one that does not exist:

[me@linuxbox ~]$ 1s -1 /bin/usr > ls-output.txt
1s: cannot access /bin/usr: No such file or directory

We received an error message. This makes sense since we specified the non-existent
directory /bin/usr, but why was the error message displayed on the screen rather than
being redirected to the file 1s-output.txt? The answer is that the 1S program does
not send its error messages to standard output. Instead, like most well-written Unix
programs, it sends its error messages to standard error. Since we only redirected standard
output and not standard error, the error message was still sent to the screen. We'll see

60

Redirecting Standard Output

how to redirect standard error in just a minute, but first, let's look at what happened to our
output file:

[me@linuxbox ~]$ 1s -1 ls-output.txt
-rw-rw-r-- 1 me me 0 2008-02-01 15:08 ls-output.txt

The file now has zero length! This is because, when we redirect output with the “>”
redirection operator, the destination file is always rewritten from the beginning. Since
our 1s command generated no results and only an error message, the redirection
operation started to rewrite the file and then stopped because of the error, resulting in its
truncation. In fact, if we ever need to actually truncate a file (or create a new, empty file)
we can use a trick like this:

[me@linuxbox ~]$ > l1ls-output.txt

Simply using the redirection operator with no command preceding it will truncate an
existing file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting the file from the
beginning? For that, we use the “>>” redirection operator, like so:

[me@linuxbox ~]$ 1s -1 /usr/bin >> ls-output.txt

Using the “>>” operator will result in the output being appended to the file. If the file
does not already exist, it is created just as though the “>" operator had been used. Let's
put it to the test:

[me@linuxbox ~]$ 1s -1 /usr/bin >> ls-output.txt
[me@linuxbox ~]$ 1s -1 /usr/bin >> ls-output.txt
[me@linuxbox ~]$ 1s -1 /usr/bin >> ls-output.txt
[me@linuxbox ~]$ 1s -1 ls-output.txt

-rw-rw-r-- 1 me me 503634 2008-02-01 15:45 1s-output.txt

We repeated the command three times resulting in an output file three times as large.

Redirecting Standard Error

Redirecting standard error lacks the ease of a dedicated redirection operator. To redirect

61

7 — Redirection

standard error we must refer to its file descriptor. A program can produce output on any
of several numbered file streams. While we have referred to the first three of these file
streams as standard input, output and error, the shell references them internally as file
descriptors zero, one and two, respectively. The shell provides a notation for redirecting
files using the file descriptor number. Since standard error is the same as file descriptor
number two, we can redirect standard error with this notation:

[me@linuxbox ~]$ 1s -1 /bin/usr 2> ls-error.txt

The file descriptor “2” is placed immediately before the redirection operator to perform
the redirection of standard error to the file 1s-error. txt.

Redirecting Standard Output And Standard Error To One File

There are cases in which we may wish to capture all of the output of a command to a
single file. To do this, we must redirect both standard output and standard error at the
same time. There are two ways to do this. First, the traditional way, which works with
old versions of the shell:

[me@linuxbox ~]$ 1s -1 /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect standard output to the
file 1s-output.txt and then we redirect file descriptor two (standard error) to file

descriptor one (standard output) using the notation 2>&1.

Notice that the order of the redirections is significant. The redirection of
standard error must always occur after redirecting standard output or it doesn't
work. In the example above,

>1s-output.txt 2>&1

redirects standard error to the file 1s-output. txt, but if the order is changed to
2>&1 >1s-output.txt

standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for performing this

62

Redirecting Standard Error

combined redirection:

[me@linuxbox ~]$ 1s -1 /bin/usr &> l1ls-output.txt

In this example, we use the single notation &> to redirect both standard output and
standard error to the file 1s-output. txt.

Disposing Of Unwanted Output

Sometimes “silence is golden,” and we don't want output from a command, we just want
to throw it away. This applies particularly to error and status messages. The system
provides a way to do this by redirecting output to a special file called “/dev/null”. This
file is a system device called a bit bucket which accepts input and does nothing with it.
To suppress error messages from a command, we do this:

[me@linuxbox ~]$ 1s -1 /bin/usr 2> /dev/null

/dev/null In Unix Culture

The bit bucket is an ancient Unix concept and due to its universality, has appeared
in many parts of Unix culture. When someone says he/she is sending your
comments to /dev/null, now you know what it means. For more examples,
see the Wikipedia article on “/dev/null”.

Redirecting Standard Input

Up to now, we haven't encountered any commands that make use of standard input
(actually we have, but we’ll reveal that surprise a little bit later), so we need to introduce
one.

cat — Concatenate Files

The cat command reads one or more files and copies them to standard output like so:

cat [file...]

63

http://en.wikipedia.org/wiki//dev/null

7 — Redirection

In most cases, you can think of cat as being analogous to the TYPE command in DOS.
You can use it to display files without paging, for example:

[me@linuxbox ~]$ cat 1ls-output.txt

will display the contents of the file 1s-output.txt. cat is often used to display
short text files. Since cat can accept more than one file as an argument, it can also be
used to join files together. Say we have downloaded a large file that has been split into
multiple parts (multimedia files are often split this way on USENET), and we want to
join them back together. If the files were named:

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could join them back together with this command:

cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be arranged in the
correct order.

This is all well and good, but what does this have to do with standard input? Nothing yet,
but let's try something else. What happens if we type “cat” with no arguments:

[me@linuxbox ~]$ cat

Nothing happens, it just sits there like it's hung. It may seem that way, but it's really
doing exactly what it's supposed to.

If cat is not given any arguments, it reads from standard input and since standard input
is, by default, attached to the keyboard, it's waiting for us to type something! Try this:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type a Ctrl-d (i.e., hold down the Ctrl key and press “d”) to tell cat that it has
reached end of file (EOF) on standard input:

64

Redirecting Standard Input

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

In the absence of filename arguments, cat copies standard input to standard output, so
we see our line of text repeated. We can use this behavior to create short text files. Let's
say that we wanted to create a file called “lazy_dog.txt” containing the text in our
example. We would do this:

[me@linuxbox ~]$ cat > lazy dog.txt
The quick brown fox jumped over the lazy dog.

Type the command followed by the text we want in to place in the file. Remember to
type Ctrl-d at the end. Using the command line, we have implemented the world's
dumbest word processor! To see our results, we can use cat to copy the file to stdout
again:

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Now that we know how cat accepts standard input, in addition to filename arguments,
let's try redirecting standard input:

[me@linuxbox ~]$ cat < lazy dog.txt
The quick brown fox jumped over the lazy dog.

Using the “<” redirection operator, we change the source of standard input from the
keyboard to the file lazy_dog.txt. We see that the result is the same as passing a
single filename argument. This is not particularly useful compared to passing a filename
argument, but it serves to demonstrate using a file as a source of standard input. Other
commands make better use of standard input, as we shall soon see.

Before we move on, check out the man page for cat, as it has several interesting options.

Pipelines

The ability of commands to read data from standard input and send to standard output is
utilized by a shell feature called pipelines. Using the pipe operator “|” (vertical bar), the

65

7 — Redirection

standard output of one command can be piped into the standard input of another:

commandl | command2

To fully demonstrate this, we are going to need some commands. Remember how we
said there was one we already knew that accepts standard input? It's 1ess. We can use
less to display, page-by-page, the output of any command that sends its results to
standard output:

[me@linuxbox ~]$ 1s -1 /usr/bin | less

This is extremely handy! Using this technique, we can conveniently examine the output
of any command that produces standard output.

Filters

Pipelines are often used to perform complex operations on data. It is possible to put
several commands together into a pipeline. Frequently, the commands used this way are
referred to as filters. Filters take input, change it somehow and then output it. The first
one we will try is sort. Imagine we wanted to make a combined list of all of the
executable programs in /bin and /usr/bin, put them in sorted order and view it:

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of 1s would have
consisted of two sorted lists, one for each directory. By including sort in our pipeline,
we changed the data to produce a single, sorted list.

uniq - Report Or Omit Repeated Lines

The uniqg command is often used in conjunction with sort. uniq accepts a sorted list
of data from either standard input or a single filename argument (see the unig man page
for details) and, by default, removes any duplicates from the list. So, to make sure our
list has no duplicates (that is, any programs of the same name that appear in both the
/bin and /usr/bin directories) we will add uniq to our pipeline:

66

Pipelines

[me@linuxbox ~]$ 1ls /bin /usr/bin | sort | uniq | less

In this example, we use uniq to remove any duplicates from the output of the sort
command. If we want to see the list of duplicates instead, we add the “-d” option to
uniq like so:

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | uniq -d | less

wc — Print Line, Word, And Byte Counts

The wc (word count) command is used to display the number of lines, words, and bytes
contained in files. For example:

[me@linuxbox ~]$ wc ls-output.txt
7902 64566 503634 ls-output.txt

In this case it prints out three numbers: lines, words, and bytes contained in 1s-
output.txt. Like our previous commands, if executed without command line
arguments, WC accepts standard input. The “-1” option limits its output to only report
lines. Adding it to a pipeline is a handy way to count things. To see the number of
programs we have in our sorted list, we can do this:

2728

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | uniq | wc -1

grep — Print Lines Matching A Pattern

grep is a powerful program used to find text patterns within files. It's used like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines containing it. The
patterns that grep can match can be very complex, but for now we will concentrate on
simple text matches. We'll cover the advanced patterns, called regular expressions in a

67

7 — Redirection

later chapter.

Let's say we want to find all the files in our list of programs that had the word “zip”
embedded in the name. Such a search might give us an idea of some of the programs on
our system that had something to do with file compression. We would do this:

[me@linuxbox ~]$ 1s /bin /usr/bin | sort | uniq | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

[T
-1

There are a couple of handy options for grep: which causes grep to ignore case
when performing the search (normally searches are case sensitive) and “-v” which tells
grep to only print lines that do not match the pattern.

head / tail — Print First / Last Part Of Files

Sometimes you don't want all of the output from a command. You may only want the
first few lines or the last few lines. The head command prints the first ten lines of a file
and the tail command prints the last ten lines. By default, both commands print ten
lines of text, but this can be adjusted with the “-n” option:

[me@linuxbox ~]$ head -n 5 ls-output.txt

total 343496

-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [

-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2007-11-26 14:27 a2p

-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 l1ls-output.txt

-rwxr-xr-x 1 root root 5234 2007-06-27 10:56 znew

-rwxr-xr-x 1 root root 691 2005-09-10 04:21 zonetab2pot.py
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyc
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2008-01-31 05:22 zsoelim -> soelim

These can be used in pipelines as well:

68

Pipelines

[me@linuxbox ~]$ 1s /usr/bin | tail -n 5
znew

zonetab2pot.py

zonetab2pot.pyc

zonetab2pot.pyo

zsoelim

tail has an option which allows you to view files in real-time. This is useful for
watching the progress of log files as they are being written. In the following example, we
will look at the messages file in /var/1og. Superuser privileges are required to do
this on some Linux distributions, since the /var/log/messages file may contain
security information:

[me@linuxbox ~]$ tail -f /var/log/messages

Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1

Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1652 seconds.

Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in

192.168.1.0/24, twin7.localdomain

Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on eth® to 192.168.1.1
port 67

Feb 8 14:07:37 twind4 dhclient: DHCPACK from 192.168.1.1

Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1771 seconds.

Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART
Prefailure Attribute: 8 Seek_Time_Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in

192.168.1.0/24, twin7.localdomain

Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user
me by (uid=0)

Feb 8 14:25:36 twind su(pam_unix)[29279]: session opened for user
root by me(uid=500)

Using the “-f” option, tail continues to monitor the file and when new lines are
appended, they immediately appear on the display. This continues until you type Ctr1-
C.

tee — Read From Stdin And Output To Stdout And Files

In keeping with our plumbing metaphor, Linux provides a command called tee which
creates a “tee” fitting on our pipe. The tee program reads standard input and copies it to
both standard output (allowing the data to continue down the pipeline) and to one or more

69

7 — Redirection

files. This is useful for capturing a pipeline's contents at an intermediate stage of
processing. Here we repeat one of our earlier examples, this time including tee to
capture the entire directory listing to the file 1s.txt before grep filters the pipeline's
contents:

[me@linuxbox ~]$ 1ls /usr/bin | tee 1ls.txt | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Summing Up

As always, check out the documentation of each of the commands we have covered in
this chapter. We have only seen their most basic usage. They all have a number of
interesting options. As we gain Linux experience, we will see that the redirection feature
of the command line is extremely useful for solving specialized problems. There are
many commands that make use of standard input and output, and almost all command
line programs use standard error to display their informative messages.

Linux Is About Imagination

When I am asked to explain the difference between Windows and Linux, I often
use a toy analogy.

Windows is like a Game Boy. You go to the store and buy one all shiny new in
the box. You take it home, turn it on and play with it. Pretty graphics, cute
sounds. After a while though, you get tired of the game that came with it so you
go back to the store and buy another one. This cycle repeats over and over.
Finally, you go back to the store and say to the person behind the counter, “I want
a game that does this!” only to be told that no such game exists because there is
no “market demand” for it. Then you say, “But I only need to change this one
thing!” The person behind the counter says you can't change it. The games are

70

Summing Up

all sealed up in their cartridges. You discover that your toy is limited to the games
that others have decided that you need and no more.

Linux, on the other hand, is like the world's largest Erector Set. You open it up
and it's just a huge collection of parts. A lot of steel struts, screws, nuts, gears,
pulleys, motors, and a few suggestions on what to build. So you start to play with
it. You build one of the suggestions and then another. After a while you discover
that you have your own ideas of what to make. You don't ever have to go back to
the store, as you already have everything you need. The Erector Set takes on the
shape of your imagination. It does what you want.

Your choice of toys is, of course, a personal thing, so which toy would you find
more satisfying?

71

8 — Seeing The World As The Shell Sees It

8 — Seeing The World As The Shell Sees It

In this chapter we are going to look at some of the “magic” that occurs on the command
line when you press the enter key. While we will examine several interesting and
complex features of the shell, we will do it with just one new command:

e echo —Display a line of text

Expansion

Each time you type a command line and press the enter key, bash performs several
processes upon the text before it carries out your command. We have seen a couple of
cases of how a simple character sequence, for example “*”, can have a lot of meaning to
the shell. The process that makes this happen is called expansion. With expansion, you
type something and it is expanded into something else before the shell acts upon it. To
demonstrate what we mean by this, let's take a look at the echo command. echo is a
shell builtin that performs a very simple task. It prints out its text arguments on standard
output:

[me@linuxbox ~]$ echo this is a test
this is a test

That's pretty straightforward. Any argument passed to echo gets displayed. Let's try
another example:

[me@linuxbox ~]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates
Videos

So what just happened? Why didn't echo print “*”? As you recall from our work with
wildcards, the “*” character means match any characters in a filename, but what we didn't
see in our original discussion was how the shell does that. The simple answer is that the
shell expands the “*” into something else (in this instance, the names of the files in the

72

Expansion

current working directory) before the echo command is executed. When the enter key is
pressed, the shell automatically expands any qualifying characters on the command line
before the command is carried out, so the echo command never saw the “*”, only its
expanded result. Knowing this, we can see that echo behaved as expected.

Pathname Expansion
The mechanism by which wildcards work is called pathname expansion. If we try some

of the techniques that we employed in our earlier chapters, we will see that they are really
expansions. Given a home directory that looks like this:

[me@linuxbox ~]$ 1s
Desktop ls-output.txt Pictures Templates
Documents Music Public Videos

we could carry out the following expansions:

[me@linuxbox ~]$ echo D*
Desktop Documents

and:

[me@linuxbox ~]1%$ echo *s
Documents Pictures Templates Videos

or even:

[me@linuxbox ~]$ echo [[:upper:]]*
Desktop Documents Music Pictures Public Templates Videos

and looking beyond our home directory:

[me@linuxbox ~]$ echo /usr/*/share
/usr/kerberos/share /usr/local/share

73

8 — Seeing The World As The Shell Sees It

Pathname Expansion Of Hidden Files

As we know, filenames that begin with a period character are hidden. Pathname
expansion also respects this behavior. An expansion such as:

echo *
does not reveal hidden files.

It might appear at first glance that we could include hidden files in an expansion
by starting the pattern with a leading period, like this:

echo .*

It almost works. However, if we examine the results closely, we will see that the
names “.” and “..” will also appear in the results. Since these names refer to the
current working directory and its parent directory, using this pattern will likely
produce an incorrect result. We can see this if we try the command:

ls -d .* | less

To correctly perform pathname expansion in this situation, we have to employ a
more specific pattern. This will work correctly:

1s -d .[!.]?*

This pattern expands into every filename that begins with a period, does not
include a second period, contains at least one additional character and can be
followed by any other characters.

Tilde Expansion

As you may recall from our introduction to the cd command, the tilde character (“~”) has
a special meaning. When used at the beginning of a word, it expands into the name of the
home directory of the named user, or if no user is named, the home directory of the
current user:

[me@linuxbox ~]1$ echo ~
/home/me

If user “foo” has an account, then:

[me@linuxbox ~]$ echo ~foo

74

Expansion

/home/foo

Arithmetic Expansion

The shell allows arithmetic to be performed by expansion. This allow us to use the shell
prompt as a calculator:

4

[me@linuxbox ~]$ echo $((2 + 2))

Arithmetic expansion uses the form:
$((expression))

where expression is an arithmetic expression consisting of values and arithmetic
operators.

Arithmetic expansion only supports integers (whole numbers, no decimals), but can
perform quite a number of different operations. Here are a few of the supported
operators:

Table 8-1: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (but remember, since expansion only supports integer
arithmetic, results are integers.)

% Modulo, which simply means, “ remainder.”

*x Exponentiation

Spaces are not significant in arithmetic expressions and expressions may be nested. For
example, to multiply five squared by three:

[me@linuxbox ~]$% echo $(($((5**2)) * 3))
75

75

8 — Seeing The World As The Shell Sees It

Single parentheses may be used to group multiple subexpressions. With this technique,
we can rewrite the example above and get the same result using a single expansion
instead of two:

[me@linuxbox ~]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice the effect of
integer division:

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2

[me@linuxbox ~]$ echo with $((5%2)) left over.

with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 35.

Brace Expansion

Perhaps the strangest expansion is called brace expansion. With it, you can create
multiple text strings from a pattern containing braces. Here's an example:

[me@linuxbox ~]%$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a preamble and a
trailing portion called a postscript. The brace expression itself may contain either a
comma-separated list of strings, or a range of integers or single characters. The pattern
may not contain embedded whitespace. Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_ {1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

A range of letters in reverse order:

[me@linuxbox ~]$ echo {Z..A}
ZYXWVUTSRQPONMLKIIHGFEDCBA

76

Expansion

Brace expansions may be nested:

[me@linuxbox ~]%$ echo a{A{1,2},B{3,4}}b
aAlb aA2b aB3b aB4b

So what is this good for? The most common application is to make lists of files or
directories to be created. For example, if we were photographers and had a large
collection of images that we wanted to organize into years and months, the first thing we
might do is create a series of directories named in numeric “Year-Month” format. This
way, the directory names will sort in chronological order. We could type out a complete
list of directories, but that's a lot of work and it's error-prone too. Instead, we could do
this:

[me@linuxbox ~]$ mkdir Pics

[me@linuxbox ~]1%$ cd Pics

[me@linuxbox Pics]$ mkdir {2007..2009}-0{1..9} {2007..2009}-{10..12}
[me@linuxbox Pics]$ 1s

2007-01 2007-07 2008-01 2008-07 2009-01 2009-07

2007-02 2007-08 2008-02 2008-08 2009-02 2009-08

2007-03 2007-09 2008-03 2008-09 2009-03 2009-09

2007-04 2007-10 2008-04 2008-10 2009-04 20609-10

2007-05 2007-11 20608-05 2008-11 2009-05 2009-11

2007-06 2007-12 2008-06 2008-12 2009-06 2009-12

Pretty slick!

Parameter Expansion

We're only going to touch briefly on parameter expansion in this chapter, but we'll be
covering it extensively later. It's a feature that is more useful in shell scripts than directly
on the command line. Many of its capabilities have to do with the system's ability to
store small chunks of data and to give each chunk a name. Many such chunks, more
properly called variables, are available for your examination. For example, the variable
named “USER” contains your user name. To invoke parameter expansion and reveal the
contents of USER you would do this:

[me@linuxbox ~]$ echo $USER
me

To see a list of available variables, try this:

77

8 — Seeing The World As The Shell Sees It

[me@linuxbox ~]$ printenv | less

You may have noticed that with other types of expansion, if you mistype a pattern, the
expansion will not take place and the echo command will simply display the mistyped
pattern. With parameter expansion, if you misspell the name of a variable, the expansion
will still take place, but will result in an empty string:

[me@linuxbox ~]$ echo $SUER

[me@linuxbox ~]$%$

Command Substitution

Command substitution allows us to use the output of a command as an expansion:

[me@linuxbox ~]$ echo $(1s)
Desktop Documents ls-output.txt Music Pictures Public Templates
Videos

One of my favorites goes something like this:

[me@linuxbox ~]$ 1s -1 $(which cp)
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Here we passed the results of which cp as an argument to the 1S command, thereby
getting the listing of of the cp program without having to know its full pathname. We are
not limited to just simple commands. Entire pipelines can be used (only partial output
shown):

[me@linuxbox ~]$ file $(1ls /usr/bin/* | grep zip)
/usr/bin/bunzip2: symbolic link to “bzip2'
/usr/bin/bzip2: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.9, stripped

/usr/bin/bzip2recover: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.9, stripped

78

Expansion

/usr/bin/funzip: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.9, stripped

/usr/bin/gpg-zip: Bourne shell script text executable
/usr/bin/gunzip: symbolic link to "../../bin/gunzip'
/usr/bin/gzip: symbolic link to "../../bin/gzip'
/usr/bin/mzip: symbolic link to "mtools'

In this example, the results of the pipeline became the argument list of the file
command.

There is an alternate syntax for command substitution in older shell programs which is
also supported in bash. It uses back-quotes instead of the dollar sign and parentheses:

[me@linuxbox ~]$ 1s -1 “which cp”
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Quoting

Now that we've seen how many ways the shell can perform expansions, it's time to learn
how we can control it. Take for example:

this is a test

[me@linuxbox ~]$ echo this is a test

or:

The total is 00.00

[me@linuxbox ~]$ echo The total is $100.00

In the first example, word-splitting by the shell removed extra whitespace from the echo
command's list of arguments. In the second example, parameter expansion substituted an
empty string for the value of “$1” because it was an undefined variable. The shell
provides a mechanism called quoting to selectively suppress unwanted expansions.

Double Quotes

The first type of quoting we will look at is double quotes. If you place text inside double
quotes, all the special characters used by the shell lose their special meaning and are

79

8 — Seeing The World As The Shell Sees It

treated as ordinary characters. The exceptions are “$”, “\” (backslash), and “*” (back-
quote). This means that word-splitting, pathname expansion, tilde expansion, and brace
expansion are suppressed, but parameter expansion, arithmetic expansion, and command
substitution are still carried out. Using double quotes, we can cope with filenames
containing embedded spaces. Say we were the unfortunate victim of a file called
two words.txt. If we tried to use this on the command line, word-splitting would
cause this to be treated as two separate arguments rather than the desired single argument:

[me@linuxbox ~]$ 1s -1 two words.txt
1s: cannot access two: No such file or directory
1s: cannot access words.txt: No such file or directory

By using double quotes, we stop the word-splitting and get the desired result; further, we
can even repair the damage:

[me@linuxbox ~]$ 1s -1 "two words.txt"
-rw-rw-r-- 1 me me 18 2008-02-20 13:03 two words.txt
[me@linuxbox ~]$ mv "two words.txt" two_words.txt

There! Now we don't have to keep typing those pesky double quotes.

Remember, parameter expansion, arithmetic expansion, and command substitution still
take place within double quotes:

[me@linuxbox ~]$ echo "S$USER $((2+2)) $(cal)"
me 4 February 2008
Su Mo Tu We Th Fr Sa
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29

We should take a moment to look at the effect of double quotes on command substitution.
First let's look a little deeper at how word splitting works. In our earlier example, we saw
how word-splitting appears to remove extra spaces in our text:

[me@linuxbox ~]$ echo this is a test
this is a test

80

Quoting

By default, word-splitting looks for the presence of spaces, tabs, and newlines (linefeed
characters) and treats them as delimiters between words. This means that unquoted
spaces, tabs, and newlines are not considered to be part of the text. They only serve as
separators. Since they separate the words into different arguments, our example
command line contains a command followed by four distinct arguments. If we add
double quotes:

[me@linuxbox ~]$ echo "this is a test"
this is a test

word-splitting is suppressed and the embedded spaces are not treated as delimiters, rather
they become part of the argument. Once the double quotes are added, our command line
contains a command followed by a single argument.

The fact that newlines are considered delimiters by the word-splitting mechanism causes
an interesting, albeit subtle, effect on command substitution. Consider the following:

[me@linuxbox ~]$ echo $(cal)
February 2008 Su Mo Tu We Th Fr Sa 1 2 3 456 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[me@linuxbox ~]1$ echo "$(cal)"

February 2008
Su Mo Tu We Th Fr Sa

1 2

3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29

In the first instance, the unquoted command substitution resulted in a command line
containing thirty-eight arguments. In the second, a command line with one argument that
includes the embedded spaces and newlines.

Single Quotes

If we need to suppress all expansions, we use single quotes. Here is a comparison of
unquoted, double quotes, and single quotes:

[me@linuxbox ~]$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
text /home/me/ls-output.txt a b foo 4 me

81

8 — Seeing The World As The Shell Sees It

[me@linuxbox ~]$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"
text ~/*.txt {a,b} foo 4 me

[me@linuxbox ~]$ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

As we can see, with each succeeding level of quoting, more and more of the expansions
are suppressed.

Escaping Characters

Sometimes we only want to quote a single character. To do this, we can precede a
character with a backslash, which in this context is called the escape character. Often
this is done inside double quotes to selectively prevent an expansion:

[me@linuxbox ~]$ echo "The balance for user $USER is: \$5.00"
The balance for user me is: $5.00

It is also common to use escaping to eliminate the special meaning of a character in a
filename. For example, it is possible to use characters in filenames that normally have
special meaning to the shell. These would include “$”, “!”, “&”, “ “, and others. To
include a special character in a filename you can to this:

[me@linuxbox ~]$ mv bad\&filename good_filename

To allow a backslash character to appear, escape it by typing “\\”. Note that within single
quotes, the backslash loses its special meaning and is treated as an ordinary character.

Backslash Escape Sequences

In addition to its role as the escape character, the backslash is also used as part of
a notation to represent certain special characters called control codes. The first
thirty-two characters in the ASCII coding scheme are used to transmit commands
to teletype-like devices. Some of these codes are familiar (tab, backspace,
linefeed, and carriage return), while others are not (null, end-of-transmission, and
acknowledge).

82

Quoting

Escape Sequence Meaning

\a Bell (“Alert” - causes the computer to beep)

\b Backspace

\n Newline. On Unix-like systems, this
produces a linefeed.

\r Carriage return

\t Tab

The table above lists some of the common backslash escape sequences. The idea
behind this representation using the backslash originated in the C programming
language and has been adopted by many others, including the shell.

Adding the “-e” option to echo will enable interpretation of escape sequences.
You may also place them inside $' '. Here, using the Sleep command, a
simple program that just waits for the specified number of seconds and then exits,
we can create a primitive countdown timer:

sleep 10; echo -e "Time's up\a"
We could also do this:
sleep 10; echo "Time's up" $'\a'

Summing Up

As we move forward with using the shell, we will find that expansions and quoting will
be used with increasing frequency, so it makes sense to get a good understanding of the
way they works. In fact, it could be argued that they are the most important subjects to
learn about the shell. Without a proper understanding of expansion, the shell will always
be a source of mystery and confusion, and much of it potential power wasted.

Further Reading

e The bash man page has major sections on both expansion and quoting which
cover these topics in a more formal manner.

e The Bash Reference Manual also contains chapters on expansion and quoting;:
http://www.gnu.org/software/bash/manual/bashref.html

83

http://www.gnu.org/software/bash/manual/bashref.html

9 — Advanced Keyboard Tricks

9 - Advanced Keyboard Tricks

I often kiddingly describe Unix as “the operating system for people who like to type.” Of
course, the fact that it even has a command line is a testament to that. But command line
users don't like to type that much. Why else would so many commands have such short
names like cp, 1s, mv, and rm? In fact, one of the most cherished goals of the command
line is laziness; doing the most work with the fewest number of keystrokes. Another goal
is never having to lift your fingers from the keyboard, never reaching for the mouse. In
this chapter, we will look at bash features that make keyboard use faster and more
efficient.

The following commands will make an appearance:
e clear —Clear the screen

e history — Display the contents of the history list

Command Line Editing

bash uses a library (a shared collection of routines that different programs can use)
called Readline to implement command line editing. We have already seen some of this.
We know, for example, that the arrow keys move the cursor but there are many more
features. Think of these as additional tools that we can employ in our work. It’s not
important to learn all of them, but many of them are very useful. Pick and choose as
desired.

Note: Some of the key sequences below (particularly those which use the ALt key)
may be intercepted by the GUI for other functions. All of the key sequences should
work properly when using a virtual console.

Cursor Movement

The following table lists the keys used to move the cursor:

84

Command Line Editing

Table 9-1: Cursor Movement Commands

Key
Ctrl-a

Ctrl-e
Ctrl-f
Ctrl-b
Alt-f
Alt-b
Ctrl-1

Modifying Text

Action

Move cursor to the beginning of the line.

Move cursor to the end of the line.

Move cursor forward one character; same as the right arrow key.
Move cursor backward one character; same as the left arrow key.
Move cursor forward one word.

Move cursor backward one word.

Clear the screen and move the cursor to the top left corner. The
clear command does the same thing.

Table 9-2 lists keyboard commands that are used to edit characters on the command line.

Table 9-2: Text Editing Commands

Key
Ctrl-d
Ctrl-t

Alt-t
Alt-1

Alt-u

Action

Delete the character at the cursor location

Transpose (exchange) the character at the cursor location with the
one preceding it.

Transpose the word at the cursor location with the one preceding it.

Convert the characters from the cursor location to the end of the
word to lowercase.

Convert the characters from the cursor location to the end of the
word to uppercase.

Cutting And Pasting (Killing And Yanking) Text

The Readline documentation uses the terms killing and yanking to refer to what we would
commonly call cutting and pasting. Items that are cut are stored in a buffer called the

kill-ring.

85

9 — Advanced Keyboard Tricks

Table 9-3: Cut And Paste Commands

Key Action

Ctrl-k Kill text from the cursor location to the end of line.

Ctrl-u Kill text from the cursor location to the beginning of the line.

Alt-d Kill text from the cursor location to the end of the current word.

Alt- Kill text from the cursor location to the beginning of the current

Backspace word. If the cursor is at the beginning of a word, kill the previous
word.

Ctrl-y Yank text from the kill-ring and insert it at the cursor location.

The Meta Key

If you venture into the Readline documentation, which can be found in the
READLINE section of the bash man page, you will encounter the term “meta
key.” On modern keyboards this maps to the A1t key but it wasn't always so.

Back in the dim times (before PCs but after Unix) not everybody had their own
computer. What they might have had was a device called a terminal. A terminal
was a communication device that featured a text display screen and a keyboard
and just enough electronics inside to display text characters and move the cursor
around. It was attached (usually by serial cable) to a larger computer or the
communication network of a larger computer. There were many different brands
of terminals and they all had different keyboards and display feature sets. Since
they all tended to at least understand ASCII, software developers wanting
portable applications wrote to the lowest common denominator. Unix systems
have a very elaborate way of dealing with terminals and their different display
features. Since the developers of Readline could not be sure of the presence of a
dedicated extra control key, they invented one and called it “meta.” While the
Alt key serves as the meta key on modern keyboards, you can also press and
release the Esc key to get the same effect as holding down the A1t key if you're
still using a terminal (which you can still do in Linux!).

Completion

Another way that the shell can help you is through a mechanism called completion.
Completion occurs when you press the tab key while typing a command. Let's see how

86

Completion

this works. Given a home directory that looks like this:

[me@linuxbox ~]$ 1s
Desktop 1s-output.txt Pictures Templates
Documents Music Public

Try typing the following but don't press the Enter key:

[me@linuxbox ~]$ 1s 1

Videos

Now press the tab key:

[me@linuxbox ~]$ 1s ls-output.txt

See how the shell completed the line for you? Let's try another one. Again, don't press

Enter:

[me@linuxbox ~]$ 1s D

Press tab:

[me@linuxbox ~]$ 1s D

No completion, just a beep. This happened because “D” matches more than one entry in
the directory. For completion to be successful, the “clue” you give it has to be

unambiguous. If we go further:

[me@linuxbox ~]$ 1ls Do

Then press tab:

[me@linuxbox ~]$ 1ls Documents

87

9 — Advanced Keyboard Tricks

The completion is successful.

While this example shows completion of pathnames, which is its most common use,
completion will also work on variables (if the beginning of the word is a “$”), user names
(if the word begins with “~”), commands (if the word is the first word on the line.) and
host names (if the beginning of the word is “@”). Host name completion only works for
host names listed in /etc/hosts.

There are a number of control and meta key sequences that are associated with
completion:

Table 9-4: Completion Commands

Key Action

Alt-? Display list of possible completions. On most systems you can also
do this by pressing the tab key a second time, which is much easier.

Alt-* Insert all possible completions. This is useful when you want to use
more than one possible match.

There quite a few more that I find rather obscure. You can see a list in the bash man
page under “READLINE”.

Programmable Completion

Recent versions of bash have a facility called programmable completion.
Programmable completion allows you (or more likely, your distribution provider)
to add additional completion rules. Usually this is done to add support for
specific applications. For example it is possible to add completions for the option
list of a command or match particular file types that an application supports.
Ubuntu has a fairly large set defined by default. Programmable completion is
implemented by shell functions, a kind of mini shell script that we will cover in
later chapters. If you are curious, try:

set | less

and see if you can find them. Not all distributions include them by default.

Using History

As we discovered in Chapter 2, bash maintains a history of commands that have been
entered. This list of commands is kept in your home directory in a file called

88

Using History

.bash_history. The history facility is a useful resource for reducing the amount of
typing you have to do, especially when combined with command line editing.

Searching History

At any time, we can view the contents of the history list by:

[me@linuxbox ~]$ history | less

By default, bash stores the last five hundred commands you have entered. We will see
how to adjust this value in a later chapter. Let's say we want to find the commands we
used to list /usr/bin. One way we could do this:

[me@linuxbox ~]$ history | grep /usr/bin

And let's say that among our results we got a line containing an interesting command like
this:

88 1ls -1 /usr/bin > ls-output.txt

The number “88” is the line number of the command in the history list. We could use this
immediately using another type of expansion called history expansion. To use our
discovered line we could do this:

[me@linuxbox ~]$!'88

bash will expand “!88” into the contents of the eighty-eighth line in the history list.
There are other forms of history expansion that we will cover a little later.

bash also provides the ability to search the history list incrementally. This means that
we can tell bash to search the history list as we enter characters, with each additional
character further refining our search. To start incremental search type Ctrl-r followed
by the text you are looking for. When you find it, you can either type Enter to execute
the command or type Ctrl-j to copy the line from the history list to the current
command line. To find the next occurrence of the text (moving “up” the history list),
type Ctrl-r again. To quit searching, type either Ctr1l-g or Ctrl-c. Here we see it
in action:

89

9 — Advanced Keyboard Tricks

[me@linuxbox ~1$

First type Ctrl-r:

(reverse-i-search) ':

The prompt changes to indicate that we are performing a reverse incremental search. It is
“reverse” because we are searching from “now” to some time in the past. Next, we start
typing our search text. In this example “/usr/bin”:

(reverse-i-search) /usr/bin': 1ls -1 /usr/bin > l1ls-output.txt

Immediately, the search returns our result. With our result, we can execute the command
by pressing Enter, or we can copy the command to our current command line for
further editing by typing Ctrl-j. Let's copyit. Type Ctrl-j:

[me@linuxbox ~]$ 1s -1 /usr/bin > l1ls-output.txt

Our shell prompt returns and our command line is loaded and ready for action!

The table below lists some of the keystrokes used to manipulate the history list:

Table 9-5: History Commands

Key Action

Ctrl-p Move to the previous history entry. Same action as the up arrow.
Ctrl-n Move to the next history entry. Same action as the down arrow.
Alt-< Move to the beginning (top) of the history list.

Alt-> Move to the end (bottom) of the history list, i.e., the current

command line.

Ctrl-r Reverse incremental search. Searches incrementally from the
current command line up the history list.

Alt-p Reverse search, non-incremental. With this key, type in the search
string and press enter before the search is performed.

90

Using History

Alt-n Forward search, non-incremental.

Ctrl-o Execute the current item in the history list and advance to the next
one. This is handy if you are trying to re-execute a sequence of
commands in the history list.

History Expansion

The shell offers a specialized type of expansion for items in the history list by using the
“1” character. We have already seen how the exclamation point can be followed by a
number to insert an entry from the history list. There are a number of other expansion
features:

Table 9-6: History Expansion Commands

Sequence Action

M Repeat the last command. It is probably easier to press up arrow
and enter.

'number Repeat history list item number.

Istring Repeat last history list item starting with string.

I?string Repeat last history list item containing string.

I would caution against using the “!string” and “!?string” forms unless you are absolutely
sure of the contents of the history list items.

There are many more elements available in the history expansion mechanism, but this
subject is already too arcane and our heads may explode if we continue. The HISTORY
EXPANSION section of the bash man page goes into all the gory details. Feel free to
explore!

script

In addition to the command history feature in bash, most Linux distributions
include a program called script that can be used to record an entire shell
session and store it in a file. The basic syntax of the command is:

script [file]

91

9 — Advanced Keyboard Tricks

where file is the name of the file used for storing the recording. If no file is
specified, the file typescript is used. See the script man page for a
complete list of the program’s options and features.

Summing Up

In this chapter we have covered some of the keyboard tricks that the shell provides to
help hardcore typists reduce their workloads. I suspect that as time goes by and you
become more involved with the command line, you will refer back to this chapter to pick
up more of these tricks. For now, consider them optional and potentially helpful.

Further Reading

e The Wikipedia has a good article on computer terminals:
http://en.wikipedia.org/wiki/Computer terminal

92

http://en.wikipedia.org/wiki/Computer_terminal

10 — Permissions

10 - Permissions

Operating systems in the Unix tradition differ from those in the MS-DOS tradition in
that they are not only multitasking systems, but also multi-user systems, as well.

What exactly does this mean? It means that more than one person can be using the
computer at the same time. While a typical computer will likely have only one keyboard
and monitor, it can still be used by more than one user. For example, if a computer is
attached to a network or the Internet, remote users can log in via ssh (secure shell) and
operate the computer. In fact, remote users can execute graphical applications and have
the graphical output appear on a remote display. The X Window System supports this as
part of its basic design.

The multi-user capability of Linux is not a recent "innovation," but rather a feature that is
deeply embedded into the design of the operating system. Considering the environment
in which Unix was created, this makes perfect sense. Years ago, before computers were
"personal,” they were large, expensive, and centralized. A typical university computer
system, for example, consisted of a large central computer located in one building and
terminals which were located throughout the campus, each connected to the large central
computer. The computer would support many users at the same time.

In order to make this practical, a method had to be devised to protect the users from each
other. After all, the actions of one user could not be allowed to crash the computer, nor
could one user interfere with the files belonging to another user.

In this chapter we are going to look at this essential part of system security and introduce
the following commands:

e 1d — Display user identity

e chmod - Change a file's mode

e umask — Set the default file permissions

e SU — Run a shell as another user

e sudo — Execute a command as another user

e chown — Change a file's owner

93

10 — Permissions

e chgrp — Change a file's group ownership

e passwd — Change a user's password

Owners, Group Members, And Everybody Else

When we were exploring the system back in Chapter 4, we may have encountered a
problem when trying to examine a file such as /etc/shadow:

[me@linuxbox ~]$ file /etc/shadow
/etc/shadow: regular file, no read permission
[me@linuxbox ~]$ less /etc/shadow
/etc/shadow: Permission denied

The reason for this error message is that, as regular users, we do not have permission to
read this file.

In the Unix security model, a user may own files and directories. When a user owns a file
or directory, the user has control over its access. Users can, in turn, belong to a group
consisting of one or more users who are given access to files and directories by their
owners. In addition to granting access to a group, an owner may also grant some set of
access rights to everybody, which in Unix terms is referred to as the world. To find out
information about your identity, use the 1d command:

[me@linuxbox ~]$ id
uid=500(me) gid=500(me) groups=500(me)

Let's look at the output. When user accounts are created, users are assigned a number
called a user ID or uid which is then, for the sake of the humans, mapped to a user name.
The user is assigned a primary group ID or gid and may belong to additional groups. The
above example is from a Fedora system. On other systems, such as Ubuntu, the output
may look a little different:

[me@linuxbox ~]$ id

uid=1000(me) gid=1000(me)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip), 44(v
ideo), 46(plugdev), 108 (1lpadmin), 114 (admin), 1000(me)

As we can see, the uid and gid numbers are different. This is simply because Fedora
starts its numbering of regular user accounts at 500, while Ubuntu starts at 1000. We can

94

Owners, Group Members, And Everybody Else

also see that the Ubuntu user belongs to a lot more groups. This has to do with the way
Ubuntu manages privileges for system devices and services.

So where does this information come from? Like so many things in Linux, from a couple
of text files. User accounts are defined in the /etc/passwd file and groups are defined
in the /etc/group file. When user accounts and groups are created, these files are
modified along with /etc/shadow which holds information about the user's password.
For each user account, the /etc/passwd file defines the user (login) name, uid, gid,
the account's real name, home directory, and login shell. If you examine the contents of
/etc/passwd and /etc/group, you will notice that besides the regular user
accounts, there are accounts for the superuser (uid 0) and various other system users.

In the next chapter, when we cover processes, you will see that some of these other
“users” are, in fact, quite busy.

While many Unix-like systems assign regular users to a common group such as “users”,
modern Linux practice is to create a unique, single-member group with the same name as
the user. This makes certain types of permission assignment easier.

Reading, Writing, And Executing

Access rights to files and directories are defined in terms of read access, write access, and
execution access. If we look at the output of the 1S command, we can get some clue as
to how this is implemented:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ 1s -1 foo.txt
-rw-rw-r-- 1 me me 0 2008-03-06 14:52 foo.txt

The first ten characters of the listing are the file attributes. The first of these characters is
the file type. Here are the file types you are most likely to see (there are other, less
common types too):

Table 10-1: File Types

Attribute File Type
- A regular file.
d A directory.

A symbolic link. Notice that with symbolic links, the remaining file
attributes are always “rwxrwxrwx” and are dummy values. The
real file attributes are those of the file the symbolic link points to.

95

10 — Permissions

C A character special file. This file type refers to a device that
handles data as a stream of bytes, such as a terminal or modem.

b A block special file. This file type refers to a device that handles
data in blocks, such as a hard drive or CD-ROM drive.

The remaining nine characters of the file attributes, called the file mode, represent the
read, write, and execute permissions for the file's owner, the file's group owner, and
everybody else:

Owner Group World

rwx rwx rwxX

When set, the r, w, and X mode attributes have the following effect on files and
directories:

Table 10-2: Permission Attributes

Attribute Files Directories
r Allows a file to be opened and Allows a directory's contents to
read. be listed if the execute attribute
is also set.
w Allows a file to be written to or Allows files within a directory
truncated, however this attribute to be created, deleted, and
does not allow files to be renamed if the execute attribute

renamed or deleted. The ability s also set.
to delete or rename files is
determined by directory

attributes.
X Allows a file to be treated as a Allows a directory to be
program and executed. entered, e.g., cd directory.

Program files written in
scripting languages must also
be set as readable to be
executed.

Here are some examples of file attribute settings:

96

Reading, Writing, And Executing

Table 10-3: Permission Attribute Examples

File Attributes

-rW-r--r--

-FwXr-Xr-X

SrW-rw----

Irwxrwxrwx

drwxrwx- - -

drwxr-x---

Meaning

A regular file that is readable, writable, and executable by the
file's owner. No one else has any access.

A regular file that is readable and writable by the file's owner.
No one else has any access.

A regular file that is readable and writable by the file's owner.
Members of the owner group may read the file. The file is
world-readable.

A regular file that is readable, writable, and executable by the
file's owner. The file may be read and executed by everybody
else.

A regular file that is readable and writable by the file's owner
and members of the file's group owner only.

A symbolic link. All symbolic links have “dummy”
permissions. The real permissions are kept with the actual file
pointed to by the symbolic link.

A directory. The owner and the members of the owner group
may enter the directory, create, rename and remove files within
the directory.

A directory. The owner may enter the directory and create,
rename and delete files within the directory. Members of the
owner group may enter the directory but cannot create, delete
or rename files.

chmod — Change file mode

To change the mode (permissions) of a file or directory, the chmod command is used.
Be aware that only the file’s owner or the superuser can change the mode of a file or
directory. chmod supports two distinct ways of specifying mode changes: octal number
representation, or symbolic representation. We will cover octal number representation

first.

97

10 — Permissions

What The Heck Is Octal?

Octal (base 8), and its cousin, hexadecimal (base 16) are number systems often
used to express numbers on computers. We humans, owing to the fact that we (or
at least most of us) were born with ten fingers, count using a base 10 number
system. Computers, on the other the other hand, were born with only one finger
and thus do all all their counting in binary (base 2). Their number system only
has two numerals, zero and one. So in binary, counting looks like this:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011...
In octal, counting is done with the numerals zero through seven, like so:
0,1,23,4,5,6,7,10, 11, 12, 13, 14, 15, 16, 17, 20, 21...

Hexadecimal counting uses the numerals zero through nine plus the letters “A”
through “F”:

0,123,4,56,7,8,9,A,B,C,D,E, F 10, 11, 12, 13...

While we can see the sense in binary (since computers only have one finger),
what are octal and hexadecimal good for? The answer has to do with human
convenience. Many times, small portions of data are represented on computers as
bit patterns. Take for example an RGB color. On most computer displays, each
pixel is composed of three color components: eight bits of red, eight bits of green,
and eight bits of blue. A lovely medium blue would be a twenty-four digit
number:

010000110110111111001101

How would you like to read and write those kinds of numbers all day? I didn't
think so. Here's where another number system would help. Each digit in a
hexadecimal number represents four digits in binary. In octal, each digit
represents three binary digits. So our twenty-four digit medium blue could be
condensed down to a six digit hexadecimal number:

436FCD

Since the digits in the hexadecimal number “line up” with the bits in the binary
number we can see that the red component of our color is “43”, the green “6F”,
and the blue “CD”.

These days, hexadecimal notation (often spoken as “hex”) is more common than
octal, but as we shall soon see, octal's ability to express three bits of binary will
be very useful...

With octal notation we use octal numbers to set the pattern of desired permissions. Since

98

Reading, Writing, And Executing

each digit in an octal number represents three binary digits, this maps nicely to the
scheme used to store the file mode. This table shows what we mean:

Octal Binary File Mode
0] 000 ---
1 001 --X
2 010 -W-
3 011 -WX
4 100 r--
5 101 r-x
6 110 rw-
7 111 rwx

By using three octal digits, we can set the file mode for the owner, group owner, and
world:

[me@linuxbox ~]$ > foo.txt

[me@linuxbox ~]$ 1s -1 foo.txt

-rw-rw-r-- 1 me me 0 2008-03-06 14:52 foo.txt
[me@linuxbox ~]$ chmod 600 foo.txt

[me@linuxbox ~]$ 1s -1 foo.txt

-rw------- 1 me me 0 2008-03-06 14:52 foo.txt

By passing the argument “600”, we were able to set the permissions of the owner to read
and write while removing all permissions from the group owner and world. Though
remembering the octal to binary mapping may seem inconvenient, you will usually only
have to use a few common ones: 7 (rwx), 6 (rw-), 5(r-x),4 (r--),and 0 (---).

chmod also supports a symbolic notation for specifying file modes. Symbolic notation is
divided into three parts: who the change will affect, which operation will be performed,
and what permission will be set. To specify who is affected, a combination of the
characters “u”, “g”, “0”, and “a” is used as follows:

Table 10-4: chmod Symbolic Notation

Symbol Meaning
u Short for “use,r” but means the file or directory owner.
g Group owner.

99

10 — Permissions

o Short for “others,” but means world.

a Short for “all.” The combination of “u”, “g”, and “0”.

If no character is specified, “all” will be assumed. The operation may be a “+” indicating
that a permission is to be added, a “-” indicating that a permission is to be taken away, or
a “=” indicating that only the specified permissions are to be applied and that all others

are to be removed.

Permissions are specified with the “r”, “w”, and “x” characters. Here are some examples
of symbolic notation:

Table 10-5: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-X Remove execute permission from the owner.

+X Add execute permission for the owner, group, and world.

Equivalent to a+X.

o-rw Remove the read and write permission from anyone besides the
owner and group owner.

go=rw Set the group owner and anyone besides the owner to have read and
write permission. If either the group owner or world previously had
execute permissions, they are removed.

u+x, go=rx Add execute permission for the owner and set the permissions for
the group and others to read and execute. Multiple specifications
may be separated by commas.

Some people prefer to use octal notation, some folks really like the symbolic. Symbolic
notation does offer the advantage of allowing you to set a single attribute without
disturbing any of the others.

Take a look at the chmod man page for more details and a list of options. A word of
caution regarding the “--recursive” option: it acts on both files and directories, so it's not
as useful as one would hope since, we rarely want files and directories to have the same
permissions.

Setting File Mode With The GUI

Now that we have seen how the permissions on files and directories are set, we can better

100

Reading, Writing, And Executing

understand the permission dialogs in the GUI. In both Nautilus (GNOME) and
Konqueror (KDE), right-clicking a file or directory icon will expose a properties dialog.
Here is an example from KDE 3.5:

CX Properties for pws-read- 2 [X
Permissions

~Access Permissions

o [Feidden |-

% Is executable

[Advanced Permissions]

~Ownership

User: bshotts
Group: bshotts

IV oK HX Cancel l

Figure 2: KDE 3.5 File
Properties Dialog

Here we can see the settings for the owner, group, and world. In KDE, clicking on the
“Advanced Permissions” button brings up another dialog that allows you to set each of
the mode attributes individually. Another victory for understanding brought to us by the
command line!

umask — Set Default Permissions

The umask command controls the default permissions given to a file when it is created.
It uses octal notation to express a mask of bits to be removed from a file's mode
attributes. Let's take a look:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ umask

0002

[me@linuxbox ~]$ > foo.txt

101

10 — Permissions

[me@linuxbox ~]$ 1s -1 foo.txt
-rw-rw-r-- 1 me me O 2008-03-06 14:53 foo.txt

We first removed any old copy of foo. txt to make sure we were starting fresh. Next,
we ran the umask command without an argument to see the current value. It responded
with the value 0002 (the value 0022 is another common default value), which is the
octal representation of our mask. We next create a new instance of the file foo. txt and
observe its permissions.

We can see that both the owner and group both get read and write permission, while
everyone else only gets read permission. The reason that world does not have write
permission is because of the value of the mask. Let's repeat our example, this time
setting the mask ourselves:

[me@linuxbox ~]$ rm foo.txt

[me@linuxbox ~]$ umask 0000

[me@linuxbox ~]$ > foo.txt

[me@linuxbox ~]$ 1s -1 foo.txt

-rw-rw-rw- 1 me me O 2008-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the file is now
world writable. To understand how this works, we have to look at octal numbers again.
If we take the mask and expand it into binary, then compare it to the attributes we can see
what happens:

Original file mode --- rW- rw- rw-
Mask 000 000 OO0 010
Result --- FW- rw- r--

Ignore for the moment the leading zeros (we'll get to those in a minute) and observe that
where the 1 appears in our mask, an attribute was removed—in this case, the the world
write permission. That's what the mask does. Everywhere a 1 appears in the binary value
of the mask, an attribute is unset. If we look at a mask value of 0022, we can see what it
does:

Original file mode --- rW- rw- rw-
Mask 000 000 010 010
Result --- rwW- r-- r--

102

Reading, Writing, And Executing

Again, where a 1 appears in the binary value, the corresponding attribute is unset. Play
with some values (try some sevens) to get used to how this works. When you're done,
remember to clean up:

[me@linuxbox ~]$ rm foo.txt; umask 0002

Most of the time you won't have to change the mask; the default provided by your
distribution will be fine. In some high-security situations, however, you will want to
control it.

Some Special Permissions

Though we usually see an octal permission mask expressed as a three digit
number, it is more technically correct to express it in four digits. Why? Because,
in addition to read, write, and execute permission, there are some other, less used,
permission settings.

The first of these is the setuid bit (octal 4000). When applied to an executable
file, it sets the effective user ID from that of real user (the user actually running
the program) to that of the program's owner. Most often this is given to a few
programs owned by the superuser. When an ordinary user runs a program that is
“setuid root” , the program runs with the effective privileges of the superuser.
This allows the program to access files and directories that an ordinary user
would normally be prohibited from accessing. Clearly, because this raises
security concerns, number of setuid programs must be held to an absolute
minimum.

The second is the setgid bit (octal 2000) which, like the setuid bit, changes the
effective group ID from the real group ID of the user to that of the file owner. If
the setgid bit is set on a directory, newly created files in the directory will be
given the group ownership of the directory rather the group ownership of the file's
creator. This is useful in a shared directory when members of a common group
need access to all the files in the directory, regardless of the file owner's primary

group.
The third is called the sticky bit (octal 1000). This is a holdover from ancient
Unix, where it was possible to mark an executable file as “not swappable.” On

files, Linux ignores the sticky bit, but if applied to a directory, it prevents users
from deleting or renaming files unless the user is either the owner of the directory,

103

10 — Permissions

the owner of the file, or the superuser. This is often used to control access to a
shared directory, such as /tmp.

Here are some examples of using chmod with symbolic notation to set these
special permissions. First assigning setuid to a program:

chmod u+s program

Next, assigning setgid to a directory:
chmod g+s dir

Finally, assigning the sticky bit to a directory:
chmod +t dir

When viewing the output from 1S, you can determine the special permissions.
Here are some examples. First, a program that is setuid:

-FWSr-Xr-X
A directory that has the setgid attribute:
drwxrwsr-x

A directory with the sticky bit set:
drwxrwxrwt

Changing ldentities

At various times, we may find it necessary to take on the identity of another user. Often
we want to gain superuser privileges to carry out some administrative task, but it is also
possible to “become” another regular user for such things as testing an account. There
are three ways to take on an alternate identity:

1. Log out and log back in as the alternate user.
2. Use the su command.
3. Use the sudo command.

We will skip the first technique since we know how to do it and it lacks the convenience
of the other two. From within our own shell session, the su command allows you to
assume the identity of another user, and either start a new shell session with that user's
IDs, or to issue a single command as that user. The sudo command allows an
administrator to set up a configuration file called /etc/sudoers, and define specific
commands that particular users are permitted to execute under an assumed identity. The

104

Changing Identities

choice of which command to use is largely determined by which Linux distribution you
use. Your distribution probably includes both commands, but its configuration will favor
either one or the other. We'll start with su.

su — Run A Shell With Substitute User And Group IDs

The su command is used to start a shell as another user. The command syntax looks like
this:

su [-[1]] [user]

If the “-1” option is included, the resulting shell session is a login shell for the specified
user. This means that the user's environment is loaded and the working directory is
changed to the user's home directory. This is usually what we want. If the user is not
specified, the superuser is assumed. Notice that (strangely) the “-1” may be abbreviated
“-» which is how it is most often used. To start a shell for the superuser, we would do
this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser's password. If it is
successfully entered, a new shell prompt appears indicating that this shell has superuser
privileges (the trailing “#” rather than a “$”) and the current working directory is now the
home directory for the superuser (normally /root.) Once in the new shell, we can carry
out commands as the superuser. When finished, type “exit” to return to the previous
shell:

[root@linuxbox ~]# exit
[me@linuxbox ~]$%$

It is also possible to execute a single command rather than starting a new interactive
command by using Su this way:

su -c 'command'

105

10 — Permissions

Using this form, a single command line is passed to the new shell for execution. It is
important to enclose the command in quotes, as we do not want expansion to occur in our
shell, but rather in the new shell:

[me@linuxbox ~]$ su -c¢ 'ls -1 /root/*'
Password:
“rwW------- 1 root root 754 2007-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total O
[me@linuxbox ~]$

sudo — Execute A Command As Another User

The sudo command is like su in many ways, but has some important additional
capabilities. The administrator can configure sudo to allow an ordinary user to execute
commands as a different user (usually the superuser) in a very controlled way. In
particular, a user may be restricted to one or more specific commands and no others.
Another important difference is that the use of sudo does not require access to the
superuser's password. To authenticate using sudo, the user uses his/her own password.
Let's say, for example, that sudo has been configured to allow us to run a fictitious
backup program called “backup_script”, which requires superuser privileges. With sudo
it would be done like this:

[me@linuxbox ~]$ sudo backup_script
Password:
System Backup Starting...

After entering the command, we are prompted for our password (not the superuser's) and
once the authentication is complete, the specified command is carried out. One important
difference between su and sudo is that sudo does not start a new shell, nor does it load
another user's environment. This means that commands do not need to be quoted any
differently than they would be without using sudo. Note that this behavior can be
overridden by specifying various options. See the sudo man page for details.

To see what privileges are granted by sudo, use the “-1” option to list them:

[me@linuxbox ~]$ sudo -1
User me may run the following commands on this host:

106

Changing Identities

(ALL) ALL

Ubuntu And sudo

One of the recurrent problems for regular users is how to perform certain tasks
that require superuser privileges. These tasks include installing and updating
software, editing system configuration files, and accessing devices. In the
Windows world, this is often done by giving users administrative privileges. This
allows users to perform these tasks. However, it also enables programs executed
by the user to have the same abilities. This is desirable in most cases, but it also
permits malware (malicious software) such as viruses to have free reign of the
computer.

In the Unix world, there has always been a larger division between regular users
and administrators, owing to the multi-user heritage of Unix. The approach taken
in Unix is to grant superuser privileges only when needed. To do this, the su and
sudo commands are commonly used.

Up until a couple of years ago, most Linux distributions relied on su for this
purpose. su didn't require the configuration that sudo required, and having a
root account is traditional in Unix. This introduced a problem. Users were
tempted to operate as root unnecessarily. In fact, some users operated their
systems as the root user exclusively, since it does away with all those annoying
“permission denied” messages. This is how you reduce the security of a Linux
system to that of a Windows system. Not a good idea.

When Ubuntu was introduced, its creators took a different tack. By default,
Ubuntu disables logins to the root account (by failing to set a password for the
account), and instead uses sudo to grant superuser privileges. The initial user
account is granted full access to superuser privileges via sudo and may grant
similar powers to subsequent user accounts.

chown — Change File Owner And Group

The chown command is used to change the owner and group owner of a file or directory.
Superuser privileges are required to use this command. The syntax of chown looks like
this:

107

10 — Permissions

chown [owner][:[group]] file...

chown can change the file owner and/or the file group owner depending on the first
argument of the command. Here are some examples:

Table 10-6: chown Argument Examples

Argument Results
bob Changes the ownership of the file from its current owner to user
bob.

bob:users Changes the ownership of the file from its current owner to user
bob and changes the file group owner to group users.

radmins Changes the group owner to the group admins. The file owner is
unchanged.
bob: Change the file owner from the current owner to user bob and

changes the group owner to the login group of user bob.

Let's say that we have two users; janet, who has access to superuser privileges and
tony, who does not. User janet wants to copy a file from her home directory to the
home directory of user tony. Since user janet wants tony to be able to edit the file,
janet changes the ownership of the copied file from janet to tony:

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo 1ls -1 ~tony/myfile.txt
-rw-r--r-- 1 root root 8031 2008-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo 1s -1 ~tony/myfile.txt
-rw-r--r-- 1 tony tony 8031 2008-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from his directory to the home directory of user
tony. Next, janet changes the ownership of the file from root (a result of using
sudo) to tony. Using the trailing colon in the first argument, janet also changed the
group ownership of the file to the login group of tony, which happens to be group
tony.

Notice that after the first use of sudo, janet was not prompted for her password? This
is because sudo, in most configurations, “trusts” you for several minutes until its timer

108

Changing Identities

runs out.

chgrp — Change Group Ownership

In older versions of Unix, the chown command only changed file ownership, not group
ownership. For that purpose, a separate command, chgrp was used. It works much the
same way as chown, except for being more limited.

Exercising Our Privileges

Now that we have learned how this permissions thing works, it's time to show it off. We
are going to demonstrate the solution to a common problem—setting up a shared
directory. Let's imagine that we have two users named “bill” and “karen.” They both
have music CD collections and wish to set up a shared directory, where they will each
store their music files as Ogg Vorbis or MP3. User bill has access to superuser
privileges via sudo.

The first thing that needs to happen is creating a group that will have both bill and
karen as members. Using the graphical user management tool, bil1l creates a group
called music and adds users bill and karen to it:

= NEw grotp, =

Basic Settings

Group name: |music

Group ID: 2001

1

Group Members
& william shotts
Guest Account
root

[+] Karen Shotts -

)
ogancel sl OK

Figure 3: Creating A New Group With GNOME

Next, bill creates the directory for the music files:

109

10 — Permissions

[bill@linuxbox ~]%$ sudo mkdir /usr/local/share/Music
Password:

Since bill is manipulating files outside his home directory, superuser privileges are
required. After the directory is created, it has the following ownerships and permissions:

[bill@linuxbox ~]$ 1s -1d /usr/local/share/Music
drwxr-xr-x 2 root root 4096 2008-03-21 18:05 /usr/local/share/Music

As we can see, the directory is owned by root and has 755 permissions. To make this
directory sharable, bi111 needs to change the group ownership and the group permissions
to allow writing:

[bill@linuxbox ~]$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ 1s -1d /usr/local/share/Music

drwxrwxr-x 2 root music 4096 2008-03-21 18:05 /usr/local/share/Music

So what does this all mean? It means that we now have a directory,
/usr/local/share/Music that is owned by root and allows read and write
access to group music. Group music has members bill and karen, thus bill and
karen can create files in directory /usr/local/share/Music. Other users can
list the contents of the directory but cannot create files there.

But we still have a problem. With the current permissions, files and directories created
within the Music directory will have the normal permissions of the users bill and
karen:

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]% 1s -1 /usr/local/share/Music
-rw-r--r-- 1 bill bill 0 2008-03-24 20:03 test_file

Actually there are two problems. First, the default umask on this system is 0022 which
prevents group members from writing files belonging to other members of the group.
This would not be a problem if the shared directory only contained files, but since this
directory will store music, and music is usually organized in a hierarchy of artists and
albums, members of the group will need the ability to create files and directories inside
directories created by other members. We need to change the umask used by bill and

110

Exercising Our Privileges

karen to 0002 instead.

Second, each file and directory created by one member will be set to the primary group of
the user rather than the group music. This can be fixed by setting the setgid bit on the
directory:

[bill@linuxbox ~]%$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ 1ls -1d /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2008-03-24 20:03 /usr/local/share/Music

Now we test to see if the new permissions fix the problem. bill sets his umask to
0002, removes the previous test file, creates a new test file and directory:

[bill@linuxbox ~]%$ umask 0002

[bill@linuxbox ~]$ rm /usr/local/share/Music/test_file
[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]% mkdir /usr/local/share/Music/test_dir
[bill@linuxbox ~]$ 1s -1 /usr/local/share/Music
drwxrwsr-x 2 bill music 4096 2008-03-24 20:24 test_dir
-rw-rw-r-- 1 bill music @ 2008-03-24 20:22 test_file
[bill@linuxbox ~]$%$

Both files and directories are now created with the correct permissions to allow all
members of the group music to create files and directories inside the Music directory.

The one remaining issue is umask. The necessary setting only lasts until the end of
session and must be reset. In the next part of the book, we'll look at making the change to
umask permanent.

Changing Your Password

The last topic we'll cover in this chapter is setting passwords for yourself (and for other
users if you have access to superuser privileges.) To set or change a password, the
passwd command is used. The command syntax looks like this:

passwd [user]

To change your password, just enter the passwd command. You will be prompted for
your old password and your new password:

111

10 — Permissions

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:

The passwd command will try to enforce use of “strong” passwords. This means the it
will refuse to accept passwords that are too short, too similar to previous passwords, are
dictionary words, or too easily guessed:

[me@linuxbox ~]$ passwd

(current) UNIX password:

New UNIX password:

BAD PASSWORD: is too similar to the old one
New UNIX password:

BAD PASSWORD: it is WAY too short

New UNIX password:

BAD PASSWORD: it is based on a dictionary word

If you have superuser privileges, you can specify a user name as an argument to the
passwd command to set the password for another user. There are other options
available to the superuser to allow account locking, password expiration, etc. See the
passwd man page for details.

Further Reading

e Wikipedia has a good article on malware:
http://en.wikipedia.org/wiki/Malware

There are number of command line programs used to create and maintain users and
groups. For more information, see the man pages for the following commands:

e adduser
e Uuseradd
e (groupadd

112

http://en.wikipedia.org/wiki/Malware

11 — Processes

11 - Processes

Modern operating systems are usually multitasking, meaning that they create the illusion
of doing more than one thing at once by rapidly switching from one executing program to
another. The Linux kernel manages this through the use of processes. Processes are how
Linux organizes the different programs waiting for their turn at the CPU.

Sometimes a computer will become sluggish or an application will stop responding. In
this chapter, we will look at some of the tools available at the command line that let us
examine what programs are doing, and how to terminate processes that are misbehaving.

This chapter will introduce the following commands:
e s — Report a snapshot of current processes
e top — Display tasks
e jobs — List active jobs
e bg - Place a job in the background
e g —Place ajob in the foreground
e Kkill —Send a signal to a process
e killall —Kill processes by name

e shutdown — Shutdown or reboot the system

How A Process Works

When a system starts up, the kernel initiates a few of its own activities as processes and
launches a program called 1nit. init, in turn, runs a series of shell scripts (located in
/etc) called init scripts, which start all the system services. Many of these services are
implemented as daemon programs, programs that just sit in the background and do their
thing without having any user interface. So even if we are not logged in, the system is at
least a little busy performing routine stuff.

The fact that a program can launch other programs is expressed in the process scheme as
a parent process producing a child process.

113

11 — Processes

The kernel maintains information about each process to help keep things organized. For
example, each process is assigned a number called a process ID or PID. PIDs are
assigned in ascending order, with init always getting PID 1. The kernel also keeps
track of the memory assigned to each process, as well as the processes' readiness to
resume execution. Like files, processes also have owners and user IDs, effective user
IDs, etc.

Viewing Processes

The most commonly used command to view processes (there are several) is ps. The ps
program has a lot of options, but in it simplest form it is used like this:

[me@linuxbox ~]1$ ps

PID TTY TIME CMD
5198 pts/1 00:00:00 bash
10129 pts/1 00:00:00 ps

The result in this example lists two processes, process 5198 and process 10129, which are
bash and ps respectively. As we can see, by default, ps doesn't show us very much,
just the processes associated with the current terminal session. To see more, we need to
add some options, but before we do that, let's look at the other fields produced by ps.
TTY is short for “Teletype,” and refers to the controlling terminal for the process. Unix
is showing its age here. The TIME field is the amount of CPU time consumed by the
process. As we can see, neither process makes the computer work very hard.

If we add an option, we can get a bigger picture of what the system is doing:

[me@linuxbox ~]$ ps x
PID TTY STAT TIME COMMAND

2799 ? Ssl 0:00 /usr/libexec/bonobo-activation-server -ac
2820 ? Sl 0:01 /usr/libexec/evolution-data-server-1.10 --
15647 ? Ss 0:00 /bin/sh /usr/bin/startkde

15751 ? Ss 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --
15754 ? S 0:00 /usr/bin/dbus-launch --exit-with-session
15755 ? Ss 0:01 /bin/dbus-daemon --fork --print-pid 4 -pr
15774 ? Ss 0:02 /usr/bin/gpg-agent -s -daemon

15793 ? S 0:00 start_kdeinit --new-startup +kcminit_start
15794 ? Ss 0:00 kdeinit Running. ..

15797 ? S 0:00 dcopserver -nosid

and many more. ..

114

Viewing Processes

Adding the “x” option (note that there is no leading dash) tells ps to show all of our
processes regardless of what terminal (if any) they are controlled by. The presence of a
“?” in the TTY column indicates no controlling terminal. Using this option, we see a list
of every process that we own.

Since the system is running a lot of processes, ps produces a long list. It is often helpful
to pipe the output from ps into 1less for easier viewing. Some option combinations also
produce long lines of output, so maximizing the terminal emulator window may be a
good idea, too.

A new column titled STAT has been added to the output. STAT is short for “state” and
reveals the current status of the process:

Table 11-1: Process States

State Meaning
Running. This means that the process is running or ready to run.

Sleeping. A process is not running; rather, it is waiting for an event,
such as a keystroke or network packet.

D Uninterruptible Sleep. Process is waiting for I/0 such as a disk
drive.

Stopped. Process has been instructed to stop. More on this later.

Z A defunct or “zombie” process. This is a child process that has
terminated, but has not been cleaned up by its parent.

< A high priority process. It's possible to grant more importance to a
process, giving it more time on the CPU. This property of a process
is called niceness. A process with high priority is said to be less
nice because it's taking more of the CPU's time, which leaves less
for everybody else.

N A low priority process. A process with low priority (a “nice”
process) will only get processor time after other processes with
higher priority have been serviced.

The process state may be followed by other characters. These indicate various exotic
process characteristics. See the pS man page for more detail.

Another popular set of options is “aux” (without a leading dash). This gives us even
more information:

115

11 — Processes

USER
root
root
root
root
root
root
root

[me@linuxbox ~]$ ps aux

PID %CPU %MEM

~NOoO O~ WNBRE

[cNoNoNoNoNoNoO]
[cNoNoNoNoNo]

.0

and many more. ..

0.

[cNoNoNoNoNo]
[cNoNoNoNoNoNoO]

VSzZ
2136
(0]

[cNoNoNoNo)

RSS
644
0

[cNoNoNoNo)

NN N W) N N N

—
<

STAT START
Ss Maro5
S< Mar05
S< Mar05
S< Mar@e5
S< Mar@e5
S< Mar05
S< Mar@5

TIME
131
100
100
100
106
136
100

[cNoNoNoNoNoNoO]

COMMAND
init
[kt]
[mi]
[ks]
[wa]
[ev]
[kh]

This set of options displays the processes belonging to every user. Using the options
without the leading dash invokes the command with “BSD style” behavior. The Linux
version of psS can emulate the behavior of the ps program found in several different
Unix implementations. With these options, we get these additional columns:

Table 11-2: BSD Style ps Column Headers

Header
USER

%CPU
%MEM
VSZ
RSS

START

Viewing Processes Dynamically With top

Meaning

User ID. This is the owner of the process.

CPU usage in percent.

Memory usage in percent.

Virtual memory size.

Resident Set Size. The amount of physical memory (RAM) the
process is using in kilobytes.

Time when the process started. For values over twenty four hours,
a date is used.

While the ps command can reveal a lot about what the machine is doing, it provides only
a snapshot of the machine's state at the moment the pS command is executed. To see a

more dynamic view of the machine's activity, we use the top command:

[me@linuxbox ~]$ top

116

Viewing Processes

The top program displays a continuously updating (by default, every 3 seconds) display
of the system processes listed in order of process activity. The name “top” comes from
the fact that the top program is used to see the “top” processes on the system. The top
display consists of two parts: a system summary at the top of the display, followed by a
table of processes sorted by CPU activity:

top - 14:59:20 up 6:30, 2 users, load average: 0.07, 0.02, 0.00
Tasks: 109 total, 1 running, 106 sleeping, 0 stopped, 2 zombie
Cpu(s): 0.7%us, 1.0%sy, 0.0%ni, 98.3%id, 0.0%wa, 0.0%hi, 0.0%si
Mem: 319496k total, 314860k used, 4636k free, 19392k buff
Swap: 875500k total, 149128k used, 726372k free, 114676k cach
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
6244 me 39 19 31752 3124 2188 S 6.3 1.0 16:24.42 trackerd
11071 me 20 0 2304 1092 840 R 1.3 0.3 0:00.14 top
6180 me 20 0@ 2700 1160 772 S 0.7 0.3 0:03.66 dbus-dae
6321 me 20 0 20944 7248 6560 S 0.7 2.3 2:51.38 multiloa
4955 root 20 O 104m 9668 5776 S 0.3 3.0 2:19.39 Xorg
1 root 20 0 2976 528 476 S 0.0 0.2 0:03.14 init
2 root 15 -5 0 0 0SS 0.0 0.0 0:00.00 kthreadd
3 root RT -5 0 0 0S 0.0 0.0 0:00.00 migratio
4 root 15 -5 0 0 S 0.0 0.0 0:00.72 ksoftirgq
5 root RT -5 0 0 OS 0.0 0.0 0:00.04 watchdog
6 root 15 -5 0 0 0S 0.0 0.0 0:00.42 events/0
7 root 15 -5 0 0 0OS 0.0 0.0 0:00.06 khelper
41 root 15 -5 0 0 S 0.0 0.0 0:01.08 kblockd/
67 root 15 -5 0 0 S 0.0 0.0 0:00.00 kseriod
114 root 20 0 0 0 0S 0.0 0.0 0:01.62 pdflush
116 root 15 -5 0 0 0OS 0.0 0.0 0:02.44 kswapdoO

The system summary contains a lot of good stuff.

Table 11-3: top Information Fields

Row Field

1 top
14:59:20
up 6:30
2 users

load average:

Here's a rundown:

Meaning
Name of the program.
Current time of day.

This is called uptime. It is the amount of time
since the machine was last booted. In this
example, the system has been up for six and a
half hours.

There are two users logged in.

Load average refers to the number of processes

117

11 — Processes

2 Tasks:

3 Cpu(s):

0.7%us

1.0%sy

0.0%ni

98.3%id
0. 0%wa
4 Mem:
5 Swap:

that are waiting to run, that is, the number of
processes that are in a runnable state and are
sharing the CPU. Three values are shown,
each for a different period of time. The first is
the average for the last 60 seconds, the next the
previous 5 minutes, and finally the previous 15
minutes. Values under 1.0 indicate that the
machine is not busy.

This summarizes the number of processes and
their various process states.

This row describes the character of the
activities that the CPU is performing.

0.7% of the CPU is being used for user
processes. This means processes outside of the
kernel itself.

1.0% of the CPU is being used for system
(kernel) processes.

0.0% of the CPU is being used by “nice” (low
priority) processes.

98.3% of the CPU is idle.
0.0% of the CPU is waiting for I/O.
Shows how physical RAM is being used.

Shows how swap space (virtual memory) is
being used.

The top program accepts a number of keyboard commands. The two most interesting are
h, which displays the program's help screen, and g, which quits top.

Both major desktop environments provide graphical applications that display information
similar to top (in much the same way that Task Manager in Windows works), but I find
that top is better than the graphical versions because it is faster and it consumes far

fewer system resources. After all, our system monitor program shouldn't be the source of
the system slowdown that we are trying to track.

Controlling Processes

Now that we can see and monitor processes, let's gain some control over them. For our

118

Controlling Processes

experiments, we're going to use a little program called Xx10go as our guinea pig. The
x1logo program is a sample program supplied with the X Window System (the
underlying engine that makes the graphics on our display go) which simply displays a re-
sizable window containing the X logo. First, we'll get to know our test subject:

[me@linuxbox ~]$ xlogo

After entering the command, a small window containing the logo should appear
somewhere on the screen. On some systems, X10g0 may print a warning message, but it
may be safely ignored.

Tip: If your system does not include the x10go program, try using gedit or
kwrite instead.

We can verify that Xx10go0 is running by resizing its window. If the logo is redrawn in the
new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell is waiting for the
program to finish, just like all the other programs we have used so far. If we close the
x1logo window, the prompt returns.

Interrupting A Process

Let's observe what happens when we run Xx1logo again. First, enter the xlogo
command and verify that the program is running. Next, return to the terminal window
and type Ctrl-c.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~1$

In a terminal, typing Ctrl-c, interrupts a program. This means that we politely asked
the program to terminate. After typing Ctr1l-c, the x1ogo window closed and the shell
prompt returned.

Many (but not all) command line programs can be interrupted by using this technique.

Putting A Process In The Background

Let's say we wanted to get the shell prompt back without terminating the x1logo

119

11 — Processes

program. We’ll do this by placing the program in the background. Think of the terminal
as having a foreground (with stuff visible on the surface like the shell prompt) and a
background (with hidden stuff behind the surface.) To launch a program so that it is
immediately placed in the background, we follow the command with an- “&” character:

[me@linuxbox ~]$ xlogo &
[1] 28236
[me@linuxbox ~]$%$

After entering the command, the x10go window appeared and the shell prompt returned,
but some funny numbers were printed too. This message is part of a shell feature called
job control. With this message, the shell is telling us that we have started job number 1
(“[1]”) and that it has PID 28236. If we run pS, we can see our process:

[me@linuxbox ~]1$ ps

PID TTY TIME CMD
10603 pts/1 00:00:00 bash
28236 pts/1 00:00:00 xlogo
28239 pts/1 00:00:00 ps

The shell's job control facility also gives us a way to list the jobs that are have been
launched from our terminal. Using the jobs command, we can see this list:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &

The results show that we have one job, numbered “1”, that it is running, and that the
command was X1ogo &.

Returning A Process To The Foreground

A process in the background is immune from keyboard input, including any attempt
interrupt it with a Ctr1-c. To return a process to the foreground, use the fg command,
this way:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &
[me@linuxbox ~]$ fg %1

120

Controlling Processes

xlogo

The command fg followed by a percent sign and the job number (called a jobspec) does
the trick. If we only have one background job, the jobspec is optional. To terminate
xlogo, type Ctrl-c.

Stopping (Pausing) A Process

Sometimes we'll want to stop a process without terminating it. This is often done to
allow a foreground process to be moved to the background. To stop a foreground
process, type Ctrl-z. Let's try it. At the command prompt, type x1ogo, the Enter
key, then Ctrl-z:

[me@linuxbox ~]$ xlogo
[1]+ Stopped xlogo
[me@linuxbox ~]$%$

After stopping Xx1ogo, we can verify that the program has stopped by attempting to
resize the x1ogo window. We will see that it appears quite dead. We can either restore
the program to the foreground, using the fg command, or move the program to the
background with the bg command:

[me@linuxbox ~]$ bg %1
[1]+ xlogo &
[me@linuxbox ~]$

As with the fg command, the jobspec is optional if there is only one job.

Moving a process from the foreground to the background is handy if we launch a
graphical program from the command, but forget to place it in the background by
appending the trailing “&”.

Why would you want to launch a graphical program from the command line? There are
two reasons. First, the program you wish to run might not be listed on the window
manager's menus (such as x1ogo). Secondly, by launching a program from the
command line, you might be able to see error messages that would otherwise be invisible
if the program were launched graphically. Sometimes, a program will fail to start up
when launched from the graphical menu. By launching it from the command line instead,
we may see an error message that will reveal the problem. Also, some graphical
programs have many interesting and useful command line options.

121

11 — Processes

Signals

The kill command is used to “kill” programs. This allows us to terminate programs
that need killing. Here's an example:

[me@linuxbox ~]$ xlogo &

[1] 28401
[me@linuxbox ~]$ kill 28401
[1]+ Terminated xlogo

We first launch x10go in the background. The shell prints the jobspec and the PID of
the background process. Next, we use the kill command and specify the PID of the
process we want to terminate. We could have also specified the process using a jobspec
(for example, “%1”) instead of a PID.

While this is all very straightforward, there is more to it than that. The kill command
doesn't exactly “kill” programs, rather it sends them signals. Signals are one of several
ways that the operating system communicates with programs. We have already seen
signals in action with the use of Ctrl-c and Ctrl-z. When the terminal receives one
of these keystrokes, it sends a signal to the program in the foreground. In the case of
Ctrl-c, a signal called INT (Interrupt) is sent; with Ctrl-z, a signal called TSTP
(Terminal Stop.) Programs, in turn, “listen” for signals and may act upon them as they
are received. The fact that a program can listen and act upon signals allows a program to
do things like save work in progress when it is sent a termination signal.

Sending Signals To Processes With kill

The kill command is used to send signals to programs. Its most common syntax looks
like this:

kill [-signal] PID...

If no signal is specified on the command line, then the TERM (Terminate) signal is sent by
default. The kill command is most often used to send the following signals:

Table 11-4: Common Signals

Number Name Meaning

1 HUP Hangup. This is a vestige of the good old days
when terminals were attached to remote

122

Signals

15

18

19

INT

KILL

TERM

CONT

STOP

computers with phone lines and modems. The
signal is used to indicate to programs that the
controlling terminal has “hung up.” The effect of
this signal can be demonstrated by closing a
terminal session. The foreground program
running on the terminal will be sent the signal and
will terminate.

This signal is also used by many daemon
programs to cause a reinitialization. This means
that when a daemon is sent this signal, it will
restart and re-read its configuration file. The
Apache web server is an example of a daemon
that uses the HUP signal in this way.

Interrupt. Performs the same function as the
Ctrl-c key sent from the terminal. It will
usually terminate a program.

Kill. This signal is special. Whereas programs
may choose to handle signals sent to them in
different ways, including ignoring them all
together, the KILL signal is never actually sent to
the target program. Rather, the kernel
immediately terminates the process. When a
process is terminated in this manner, it is given no
opportunity to “clean up” after itself or save its
work. For this reason, the KILL signal should
only be used as a last resort when other
termination signals fail.

Terminate. This is the default signal sent by the
kill command. If a program is still “alive”
enough to receive signals, it will terminate.

Continue. This will restore a process after a
STOP signal.

Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is
not sent to the target process, and thus it cannot be
ignored.

123

11 — Processes

Let's try out the ki1l command:

[me@linuxbox ~]$ xlogo &

[1] 13546

[me@linuxbox ~]$ kill -1 13546

[1]+ Hangup xlogo

In this example, we start the X10go0 program in the background and then send it a HUP
signal with kill. The xlogo program terminates and the shell indicates that the
background process has received a hangup signal. You may need to press the enter key a
couple of times before you see the message. Note that signals may be specified either by
number or by name, including the name prefixed with the letters “SIG”:

[me@linuxbox ~]$ xlogo &

[1] 13601

[me@linuxbox ~]$ kill -INT 13601
[1]+ Interrupt xlogo
[me@linuxbox ~]$ xlogo &

[1] 13608

[me@linuxbox ~]$ kill -SIGINT 13608
[1]+ Interrupt xlogo

Repeat the example above and try out the other signals. Remember, you can also use
jobspecs in place of PIDs.

Processes, like files, have owners, and you must be the owner of a process (or the
superuser) in order to send it signals with kill.

In addition to the list of signals above, which are most often used with kill, there are
other signals frequently used by the system. Here is a list of other common signals:

Table 11-5: Other Common Signals

Number Name Meaning
3 QUIT Quit.
11 SEGV Segmentation Violation. This signal is sent if a

program makes illegal use of memory, that is, it
tried to write somewhere it was not allowed to.

20 TSTP Terminal Stop. This is the signal sent by the
terminal when the Ctrl-z key is pressed.
Unlike the STOP signal, the TSTP signal is

124

Signals

received by the process and may be ignored.

28 WINCH Window Change. This is a signal sent by the
system when a window changes size. Some
programs , like top and less will respond to
this signal by redrawing themselves to fit the new
window dimensions.

For the curious, a complete list of signals can be seen with the following command:

[me@linuxbox ~]$ kill -1

Sending Signals To Multiple Processes With killall

It's also possible to send signals to multiple processes matching a specified program or
user name by using the killall command. Here is the syntax:

killall [-u user] [-signal] name. ..

To demonstrate, we will start a couple of instances of the x10go program and then
terminate them:

[me@linuxbox ~]$ xlogo &

[1] 18801

[me@linuxbox ~]$ xlogo &

[2] 18802

[me@linuxbox ~]$ killall xlogo

[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with kill, you must have superuser privileges to send signals to
processes that do not belong to you.

More Process Related Commands

Since monitoring processes is an important system administration task, there are a lot of
commands for it. Here are some to play with:

125

11 — Processes

Table 11-6: Other Process Related Commands

Command
pstree

vmstat

xload

tload

Description

Outputs a process list arranged in a tree-like pattern showing the
parent/child relationships between processes.

Outputs a snapshot of system resource usage including, memory,
swap and disk I/O. To see a continuous display, follow the
command with a time delay (in seconds) for updates. For example:
vmstat 5. Terminate the output with Ctrl-c.

A graphical program that draws a graph showing system load over
time.

Similar to the x1oad program, but draws the graph in the terminal.
Terminate the output with Ctrl-c.

126

Part 3 — Configuration And The Environment

Part 3 — Configuration And The
Environment

127

12 — The Environment

12 - The Environment

As we discussed earlier, the shell maintains a body of information during our shell
session called the environment. Data stored in the environment is used by programs to
determine facts about our configuration. While most programs use configuration files to
store program settings, some programs will also look for values stored in the environment
to adjust their behavior. Knowing this, we can use the environment to customize our
shell experience.

In this chapter, we will work with the following commands:
e printenv — Print part or all of the environment
e set — Set shell options
e export — Export environment to subsequently executed programs

e alias — Create an alias for a command

What Is Stored In The Environment?

The shell stores two basic types of data in the environment, though, with bash, the
types are largely indistinguishable. They are environment variables and shell variables.
Shell variables are bits of data placed there by bash, and environment variables are
basically everything else. In addition to wvariables, the shell also stores some
programmatic data, namely aliases and shell functions. We covered aliases in Chapter 6,
and shell functions (which are related to shell scripting) will be covered in Part 5.

Examining The Environment

We can use either the set builtin in bash or the printenv program to see what is
stored in the environment. The set command will show both the shell and environment
variables, while printenv will only display the latter. Since the list of environment
contents will be fairly long, it is best to pipe the output of either command into 1ess:

[me@linuxbox ~]$ printenv | less

128

What Is Stored In The Environment?

Doing so, we should get something that looks like this:

KDE_MULTIHEAD=false

SSH_AGENT_PID=6666

HOSTNAME=1inuxbox

GPG_AGENT_INFO=/tmp/gpg-PdOt7g/S.gpg-agent:6689:1

SHELL=/bin/bash

TERM=xterm

XDG_MENU_PREFIX=kde-

HISTSIZE=1000
XDG_SESSION_COOKIE=6d7b05c65846c3eaf3101b0046bd2b00-1208521990.996705
-1177056199
GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/me/.gtkrc-2.0:/home/me/.kde/sh
are/config/gtkrc-2.0
GTK_RC_FILES=/etc/gtk/gtkrc:/home/me/.gtkrc:/home/me/.kde/share/confi
g/gtkrc

GS_LIB=/home/me/.fonts

WINDOWID=29360136

QTDIR=/usr/1lib/qt-3.3

QTINC=/usr/1ib/qt-3.3/include

KDE_FULL_SESSION=true

USER=me
LS_COLORS=n0=00:f1i=00:di=00;34:1n=00;36:pi=40;33:s50=00;35:bd=40;33;01
:cd=40;33;01:0r=01;05;37;41:mi=01,;05;37;41:ex=00;32:*.cmd=00;32: *.exe

What we see is a list of environment variables and their values. For example, we see a
variable called USER, which contains the value “me”. The printenv command can
also list the value of a specific variable:

[me@linuxbox ~]$ printenv USER
me

The set command, when used without options or arguments, will display both the shell
and environment variables, as well as any defined shell functions. Unlike printenv,
its output is courteously sorted in alphabetical order:

[me@linuxbox ~]$ set | less

It is also possible to view the contents of a variable using the echo command, like this:

129

12 — The Environment

[me@linuxbox ~]$ echo $HOME

/home/me

One element of the environment that neither set nor printenv displays is aliases. To
see them, enter the alias command without arguments:

[me@linuxbox ~]$ alias

alias 1.='"1ls -d .* --color=tty'

alias 11='1ls -1 --color=tty'

alias 1ls='ls --color=tty'

alias vi='vim'

alias which='alias | /usr/bin/which --tty-only --read-alias --show-
dot --show-tilde'

Some Interesting Variables

The environment contains quite a few variables, and though your environment may differ
from the one presented here, you will likely see the following variables in your

environment:

Table 12-1: Environment Variables

Variable
DISPLAY

EDITOR
SHELL
HOME
LANG
OLD_PWD
PAGER

PATH

PS1

Contents

The name of your display if you are running a graphical
environment. Usually this is “:0”, meaning the first display
generated by the X server.

Than name of the program to be used for text editing.

The name of your shell program.

The pathname of your home directory.

Defines the character set and collation order of your language.
The previous working directory.

The name of the program to be used for paging output. This is
often set to /usr/bin/less.

A colon-separated list of directories that are searched when you
enter the name of a executable program.

Prompt String 1. This defines the contents of your shell prompt. As
we will later see, this can be extensively customized.

130

What Is Stored In The Environment?

PWD The current working directory.

TERM The name of your terminal type. Unix-like systems support many
terminal protocols; this variable sets the protocol to be used with
your terminal emulator.

TZ Specifies your timezone. Most Unix-like systems maintain the
computer’s internal clock in Coordinated Universal Time (UTC)
and then displays the local time by applying an offset specified by
this variable.

USER Your user name.

Don't worry if some of these values are missing. They vary by distribution.

How Is The Environment Established?

When we log on to the system, the bash program starts, and reads a series of
configuration scripts called startup files, which define the default environment shared by
all users. This is followed by more startup files in our home directory that define our
personal environment. The exact sequence depends on the type of shell session being
started. There are two kinds: a login shell session and a non-login shell session.

A login shell session is one in which we are prompted for our user name and password;
when we start a virtual console session, for example. A non-login shell session typically
occurs when we launch a terminal session in the GUI.

Login shells read one or more startup files as shown in Table 12-2:

Table 12-2: Startup Files For Login Shell Sessions

File Contents

/etc/profile A global configuration script that applies to all users.

~/ .bash_profile A user's personal startup file. Can be used to extend or
override settings in the global configuration script.

~/ .bash_login If ~/.bash_profile is not found, bash attempts to
read this script.

~/.profile If neither ~/ . bash_profile nor ~/.bash_login

is found, bash attempts to read this file. This is the
default in Debian-based distributions, such as Ubuntu.

Non-login shell sessions read the following startup files:

131

12 — The Environment

Table 12-3: Startup Files For Non-Login Shell Sessions

File Contents
/etc/bash.bashrc A global configuration script that applies to all users.
~/ .bashrc A user's personal startup file. Can be used to extend or

override settings in the global configuration script.

In addition to reading the startup files above, non-login shells also inherit the
environment from their parent process, usually a login shell.

Take a look at your system and see which of these startup files you have. Remember—
since most of the filenames listed above start with a period (meaning that they are
hidden), you will need to use the “-a” option when using 1s.

The ~/ .bashrc file is probably the most important startup file from the ordinary user’s
point of view, since it is almost always read. Non-login shells read it by default and most
startup files for login shells are written in such a way as to read the ~/ . bashrc file as
well.

What's In A Startup File?

If we take a look inside a typical .bash_profile (taken from a CentOS 4 system), it
looks something like this:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH: $HOME/bin
export PATH

Lines that begin with a “#” are comments and are not read by the shell. These are there
for human readability. The first interesting thing occurs on the fourth line, with the
following code:

if [-f ~/.bashrc]; then

132

How Is The Environment Established?

fi

. ~/.bashrc

This is called an if compound command, which we will cover fully when we get to shell
scripting in Part 5, but for now we will translate:

read the "~/.bashrc" file.

If the file "~/.bashrc" exists, then

We can see that this bit of code is how a login shell gets the contents of .bashrc. The
next thing in our startup file has to do with the PATH variable.

Ever wonder how the shell knows where to find commands when we enter them on the
command line? For example, when we enter 1s, the shell does not search the entire
computer to find /bin/1s (the full pathname of the 1S command), rather, it searches a
list of directories that are contained in the PATH variable.

The PATH variable is often (but not always, depending on the distribution) set by the
/etc/profile startup file and with this code:

PATH=$PATH : $HOME/bin

PATH is modified to add the directory $HOME/bin to the end of the list. This is an
example of parameter expansion, which we touched on in Chapter 8. To demonstrate
how this works, try the following:

[me@linuxbox ~]$ foo="This is some "
[me@linuxbox ~]$ echo $foo

This is some

[me@linuxbox ~]$ foo=$foo"text."
[me@linuxbox ~]$ echo $foo

This is some text.

Using this technique, we can append text to the end of a variable's contents.

By adding the string $HOME/bin to the end of the PATH variable's contents, the
directory $HOME/b1in is added to the list of directories searched when a command is
entered. This means that when we want to create a directory within our home directory
for storing our own private programs, the shell is ready to accommodate us. All we have

133

12 — The Environment

to do is call it bin, and we’re ready to go.

Note: Many distributions provide this PATH setting by default. Some Debian
based distributions, such as Ubuntu, test for the existence of the ~/bin directory at
login, and dynamically add it to the PATH variable if the directory is found.

Lastly, we have:

export PATH

The export command tells the shell to make the contents of PATH available to child
processes of this shell.

Modifying The Environment

Since we know where the startup files are and what they contain, we can modify them to
customize our environment.

Which Files Should We Modify?

As a general rule, to add directories to your PATH, or define additional environment
variables, place those changes in .bash_profile (or equivalent, according to your
distribution. For example, Ubuntu uses .profile.) For everything else, place the
changes in .bashrc. Unless you are the system administrator and need to change the
defaults for all users of the system, restrict your modifications to the files in your home
directory. It is certainly possible to change the files in /etc such as profile, and in
many cases it would be sensible to do so, but for now, let's play it safe.

Text Editors

To edit (i.e., modify) the shell's startup files, as well as most of the other configuration
files on the system, we use a program called a text editor. A text editor is a program that
is, in some ways, like a word processor in that it allows you to edit the words on the
screen with a moving cursor. It differs from a word processor by only supporting pure
text, and often contains features designed for writing programs. Text editors are the
central tool used by software developers to write code, and by system administrators to
manage the configuration files that control the system.

There are a lot of different text editors available for Linux; your system probably has
several installed. Why so many different ones? Probably because programmers like

134

Modifying The Environment

writing them, and since programmers use them extensively, they write editors to express
their own desires as to how they should work.

Text editors fall into two basic categories: graphical and text based. GNOME and KDE
both include some popular graphical editors. GNOME ships with an editor called
gedit, which is usually called “Text Editor” in the GNOME menu. KDE usually ships
with three which are (in order of increasing complexity) kedit, kwrite, and kate.

There are many text-based editors. The popular ones you will encounter are nano, vi,
and emacs. The nano editor is a simple, easy-to-use editor designed as a replacement
for the pico editor supplied with the PINE email suite. The vi editor (on most Linux
systems replaced by a program named vim, which is short for “Vi IMproved”) is the
traditional editor for Unix-like systems. It will be the subject of our next chapter. The
emacs editor was originally written by Richard Stallman. It is a gigantic, all-purpose,
does-everything programming environment. While readily available, it is seldom
installed on most Linux systems by default.

Using A Text Editor

All text editors can be invoked from the command line by typing the name of the editor
followed by the name of the file you want to edit. If the file does not already exist, the
editor will assume that you want to create a new file. Here is an example using gedit:

[me@linuxbox ~]$ gedit some_file

This command will start the gedit text editor and load the file named “some_file”, if it
exists.

All graphical text editors are pretty self-explanatory, so we won't cover them here.
Instead, we will concentrate on our first text-based text editor, nano. Let's fire up nano
and edit the . bashrc file. But before we do that, let's practice some “safe computing.”
Whenever we edit an important configuration file, it is always a good idea to create a
backup copy of the file first. This protects us in case we mess the file up while editing.
To create a backup of the . bashrc file, do this:

[me@linuxbox ~]$ cp .bashrc .bashrc.bak

It doesn't matter what you call the backup file, just pick an understandable name. The
extensions “.bak”, “.sav”, “.0ld”, and “.orig” are all popular ways of indicating a backup
file. Oh, and remember that cp will overwrite existing files silently.

135

12 — The Environment

Now that we have a backup file, we'll start the editor:

[me@linuxbox ~]$ nano .bashrc

Once nano starts, we’ll get a screen like this:

GNU nano 2.0.3 File: .bashrc
.bashrc

Source global definitions

if [-f /etc/bashrc]; then
/etc/bashrc

fi

User specific aliases and functions

[Read 8 lines]

¢ Get Helpl® WriteOutlx Read Fillyf Prev Pag@ld Cut Text@l® Cur Pos
W Exit uW| Justify W Where IS Next Pag@ll UnCut Te@W To Spell

Note: If your system does not have nano installed, you may use a graphical editor
instead.

The screen consists of a header at the top, the text of the file being edited in the middle
and a menu of commands at the bottom. Since nano was designed to replace the text
editor supplied with an email client, it is rather short on editing features.

The first command you should learn in any text editor is how to exit the program. In the
case of nano, you type Ctrl-x to exit. This is indicated in the menu at the bottom of
the screen. The notation “AX” means Ctrl-x. This is a common notation for control
characters used by many programs.

The second command we need to know is how to save our work. With nano it's Ctrl-

136

Modifying The Environment

0. With this knowledge under our belts, we're ready to do some editing. Using the down
arrow key and/or the PageDown key, move the cursor to the end of the file, then add the
following lines to the . bashrc file:

umask 0002

export HISTCONTROL=ignoredups
export HISTSIZE=1000

alias 1.='ls -d .* --color=auto'’
alias 11='1ls -1 --color=auto'

Note: Your distribution may already include some of these, but duplicates won't
hurt anything.

Here is the meaning of our additions:

Line Meaning

umask 0002 Sets the umask to solve the
problem with shared directories
we discussed in Chapter 10.

export HISTCONTROL=ignoredups Causes the shell's history
recording feature to ignore a
command if the same command
was just recorded.

export HISTSIZE=1000 Increases the size of the command
history from the default of 500
lines to 1000 lines.

alias 1.='ls -d .* --color=auto' Creates a new command called
“1.” which displays all directory
entries that begin with a dot.

alias 11='ls -1 --color=auto' Creates a new command called
“11” which displays a long
format directory listing.

As we can see, many of our additions are not intuitively obvious, so it would be a good
idea to add some comments to our .bashrc file to help explain things to the humans.
Using the editor, change our additions to look like this:

137

12 — The Environment

Change umask to make directory sharing easier
umask 0002

Ignore duplicates in command history and increase
history size to 1000 lines

export HISTCONTROL=ignoredups

export HISTSIZE=1000

Add some helpful aliases
alias 1.='1ls -d .* --color=auto'
alias 11='ls -1 --color=auto'

Ah, much better! With our changes complete, type Ctrl-0 to save our modified
.bashrc file, and Ctr1-x to exit nano.

Why Comments Are Important

Whenever you modify configuration files it's a good idea to add some comments
to document your changes. Sure, you will remember what you changed
tomorrow, but what about six months from now? Do yourself a favor and add
some comments. While you're at it, it’s not a bad idea to keep a log of what
changes you make.

Shell scripts and bash startup files use a “#” symbol to begin a comment. Other
configuration files may use other symbols. Most configuration files will have
comments. Use them as a guide.

You will often see lines in configuration files that are commented out to prevent
them from being used by the affected program. This is done to give the reader
suggestions for possible configuration choices or examples of correct
configuration syntax. For example, the .bashrc file of Ubuntu 8.04 contains
these lines:

some more 1ls aliases
#alias 11='1ls -1'
#alias la='ls -A'
#alias 1='ls -CF'

The last three lines are valid alias definitions that have been commented out. If
you remove the leading “#” symbols from these three lines, a technique called
uncommenting, you will activate the aliases. Conversely, if you add a “#”
symbol to the beginning of a line, you can deactivate a configuration line while
preserving the information it contains.

138

Modifying The Environment

Activating Our Changes

The changes we have made to our .bashrc will not take affect until we close our
terminal session and start a new one, since the .bashrc file is only read at the
beginning of a session. However, we can force bash to re-read the modified .bashrc
file with the following command:

[me@linuxbox ~]$ source .bashrc

After doing this, we should be able to see the effect of our changes. Try out one of the
new aliases:

[me@linuxbox ~]$ 11

Summing Up

In this chapter we learned an essential skill—editing configuration files with a text
editor. Moving forward, as we read man pages for commands, take note of the
environment variables that commands support. There may be a gem or two. In later

chapters, we will learn about shell functions, a powerful feature that you can also include
in the bash startup files to add to your arsenal of custom commands.

Further Reading

e The INVOCATION section of the bash man page covers the bash startup files
in gory detail.

139

13 — A Gentle Introduction To vi

13 - A Gentle Introduction To vi

There is an old joke about a visitor to New York City asking a passerby for directions to
the city's famous classical music venue:

Visitor: Excuse me, how do I get to Carnegie Hall?
Passerby: Practice, practice, practice!

Learning the Linux command line, like becoming an accomplished pianist, is not
something that we pick up in an afternoon. It takes years of practice. In this chapter, we
will introduce the vi (pronounced “vee eye”) text editor, one of the core programs in the
Unix tradition. Vi is somewhat notorious for its difficult user interface, but when we see
a master sit down at the keyboard and begin to “play,” we will indeed be witness to some
great art. We won't become masters in this chapter, but when we are done, we will know
how to play “chopsticks” in vi.

Why We Should Learn vi

In this modern age of graphical editors and easy-to-use text-based editors such as nano,
why should we learn vi? There are three good reasons:

e Vi is always available. This can be a lifesaver if we have a system with no
graphical interface, such as a remote server or a local system with a broken X
configuration. nano, while increasingly popular is still not universal. POSIX, a
standard for program compatibility on Unix systems, requires that Vi be present.

e Vi is lightweight and fast. For many tasks, it's easier to bring up v1i than it is to
find the graphical text editor in the menus and wait for its multiple megabytes to
load. In addition, vi is designed for typing speed. As we shall see, a skilled vi
user never has to lift his or her fingers from the keyboard while editing.

e We don't want other Linux and Unix users to think we are sissies.

Okay, maybe two good reasons.

140

A Little Background

A Little Background

The first version of vi was written in 1976 by Bill Joy, a University of California at
Berkley student who later went on to co-found Sun Microsystems. V1 derives its name
from the word “visual,” because it was intended to allow editing on a video terminal with
a moving cursor. Previous to visual editors, there were line editors which operated on a
single line of text at a time. To specify a change, we tell a line editor to go to a particular
line and describe what change to make, such as adding or deleting text. With the advent
of video terminals (rather than printer-based terminals like teletypes) visual editing
became possible. Vi actually incorporates a powerful line editor called ex, and we can
use line editing commands while using v1i.

Most Linux distributions don't include real vi; rather, they ship with an enhanced
replacement called vim (which is short for “vi improved”) written by Bram Moolenaar.
vim is a substantial improvement over traditional Unix vi and is usually symbolically
linked (or aliased) to the name “vi” on Linux systems. In the discussions that follow, we
will assume that we have a program called “vi” that is really vim.

Starting And Stopping vi
To start v1, we simply type the following:

[me@linuxbox ~]$ vi

And a screen like this should appear:

= VIM - Vi Improved

~ version 7.1.138
= by Bram Moolenaar et al.
= Vim is open source and freely distributable

= Sponsor Vim development!
= type :help sponsor<Enter> for information

= type :qg<Enter> to exit
= type :help<Enter> or <F1> for on-1line help
= type :help version7<Enter> for version info

= Running in Vi compatible mode
= type :set nocp<Enter> for Vim defaults

141

13 — A Gentle Introduction To vi

= type :help cp-default<Enter> for info on this

Just as we did with nano earlier, the first thing to learn is how to exit. To exit, we enter
the following command (note that the colon character is part of the command):

The shell prompt should return. If, for some reason, vi will not quit (usually because we
made a change to a file that has not yet been saved), we can tell vi that we really mean it
by adding an exclamation point to the command:

:q!

Tip: If you get “lost” in Vi, try pressing the ESc key twice to find your way again.

Compatibility Mode

In the example startup screen above (taken from Ubuntu 8.04), we see the text
“Running in Vi compatible mode.” This means that vim will run in a mode that
is closer to the normal behavior of v1 rather than the enhanced behavior of vim.
For purposes of this chapter, we will want to run vim with its enhanced behavior.
To do this, you have a few options:

Try running vim instead of vi.

If that works, consider adding alias vi='vim' to your .bashrc file.
Alternately, use this command to add a line to your vim configuration file:
echo "set nocp" >> ~/.vimrc

Different Linux distributions package vim in different ways. Some distributions
install a minimal version of vim by default that only supports a limiting set of

142

Starting And Stopping vi

vim features. While preforming the lessons that follow, you may encounter
missing features. If this is the case, install the full version of vim.

Editing Modes

Let's start up Vi again, this time passing to it the name of a nonexistent file. This is how
we can create a new file with vi:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ vi foo.txt

If all goes well, we should get a screen like this:

"foo.txt" [New File]

The leading tilde characters (”~”) indicate that no text exists on that line. This shows that
we have an empty file. Do not type anything yet!

The second most important thing to learn about vi (after learning how to exit) is that vi

143

13 — A Gentle Introduction To vi

is a modal editor. When V1 starts up, it begins in command mode. In this mode, almost
every key is a command, so if we were to start typing, Vi would basically go crazy and
make a big mess.

Entering Insert Mode

In order to add some text to our file, we must first enter insert mode. To do this, we press
the “i” key. Afterwards, we should see the following at the bottom of the screen if vim is
running in its usual enhanced mode (this will not appear in vi compatible mode):

-- INSERT --

Now we can enter some text. Try this:

The quick brown fox jumped over the lazy dog.
To exit insert mode and return to command mode, press the ESC key.

Saving Our Work

To save the change we just made to our file, we must enter an ex command while in

command mode. This is easily done by pressing the “:” key. After doing this, a colon
character should appear at the bottom of the screen:

To write our modified file, we follow the colon with a “w” then Enter:

The file will be written to the hard drive and we should get a confirmation message at the
bottom of the screen, like this:

"foo.txt" [New] 1L, 46C written

144

Editing Modes

Tip: If you read the vim documentation, you will notice that (confusingly)
command mode is called normal mode and eX commands are called command
mode. Beware.

Moving The Cursor Around

While in command mode, vi offers a large number of movement commands, some of
which it shares with 1ess. Here is a subset:

Table 13-1: Cursor Movement Keys

Key Moves The Cursor

1 or Right Arrow Right one character.

h or Left Arrow Left one character.

j or Down Arrow Down one line.

k or Up Arrow Up one line.

O (zero) To the beginning of the current line.

A To the first non-whitespace character on the current
line.

$ To the end of the current line.

To the beginning of the next word or punctuation

character.

W To the beginning of the next word, ignoring
punctuation characters.

b To the beginning of the previous word or punctuation
character.

B To the beginning of the previous word, ignoring
punctuation characters.

Ctrl-f or Page Down Down one page.

Ctrl-borPage Up Up one page.

numberG To line number. For example, 1G moves to the first

line of the file.
G To the last line of the file.

145

13 — A Gentle Introduction To vi

Why are the h, j, k, and 1 keys used for cursor movement? Because when vi was
originally written, not all video terminals had arrow keys, and skilled typists could use
regular keyboard keys to move the cursor without ever having to lift their fingers from
the keyboard.

Many commands in Vi can be prefixed with a number, as with the “G” command listed
above. By prefixing a command with a number, we may specify the number of times a
command is to be carried out. For example, the command “5j” causes Vi to move the
cursor down five lines.

Basic Editing

Most editing consists of a few basic operations such as inserting text, deleting text and
moving text around by cutting and pasting. Vi, of course, supports all of these
operations in its own unique way. Vi also provides a limited form of undo. If we press
the “u” key while in command mode, vi will undo the last change that you made. This
will come in handy as we try out some of the basic editing commands.

Appending Text

v1i has several different ways of entering insert mode. We have already used the i
command to insert text.

Let's go back to our foo. txt file for a moment:

The quick brown fox jumped over the lazy dog.

If we wanted to add some text to the end of this sentence, we would discover that the i
command will not do it, since we can't move the cursor beyond the end of the line. vi
provides a command to append text, the sensibly named “a” command. If we move the
cursor to the end of the line and type “a”, the cursor will move past the end of the line
and v1 will enter insert mode. This will allow us to add some more text:

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the ESC key to exit insert mode.

Since we will almost always want to append text to the end of a line, vi offers a shortcut
to move to end of the current line and start appending. It's the “A” command. Let's try it

146

Basic Editing

and add some more lines to our file.

First, we'll move the cursor to the beginning of the line using the “0” (zero) command.
Now we type “A” and add the following lines of text:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Again, press the ESc key to exit insert mode.

As we can see, the “A” command is more useful as it moves the cursor to the end of the
line before starting insert mode.
Opening A Line

Another way we can insert text is by “opening” a line. This inserts a blank line between
two existing lines and enters insert mode. This has two variants:

Table 13-2: Line Opening Keys

Command Opens
o The line below the current line.
0 The line above the current line.

We can demonstrate this as follows: place the cursor on “Line 3” then press the 0 key.

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3

Line 4
Line 5

A new line was opened below the third line and we entered insert mode. EXit insert mode
by pressing the ESC key. Press the u key to undo our change.

Press the O key to open the line above the cursor:

147

13 — A Gentle Introduction To vi

Line 2

Line 3
Line 4
Line 5

The quick brown fox jumped over the lazy dog. It was cool.

Exit insert mode by pressing the

Deleting Text

As we might expect, V1 offers a variety of ways to delete text, all of which contain one
of two keystrokes. First, the X key will delete a character at the cursor location. X may
be preceded by a number specifying how many characters are to be deleted. The d key is
more general purpose. Like X, it may be preceded by a number specifying the number of
times the deletion is to be performed. In addition, d is always followed by a movement

Esc key and undo our change by pressing u.

command that controls the size of the deletion. Here are some examples:

Table 13-3: Text Deletion Commands

Command
X

3X
dd
5dd
dw

d$

do

an

dG
d20G

Place the cursor on the word “It” on the first line of our text. Press the X key repeatedly

Deletes

The current character.

The current character and the next two characters.
The current line.

The current line and the next four lines.

From the current cursor position to the beginning of
the next word.

From the current cursor location to the end of the
current line.

From the current cursor location to the beginning of
the line.

From the current cursor location to the first non-
whitespace character in the line.

From the current line to the end of the file.

From the current line to the twentieth line of the file.

148

Basic Editing

until the rest of the sentence is deleted. Next, press the U key repeatedly until the
deletion is undone.

Note: Real v1i only supports a single level of undo. vim supports multiple levels.

Let's try the deletion again, this time using the d command. Again, move the cursor to
the word “It” and press dW to delete the word:

The quick brown fox jumped over the lazy dog. was cool.
Line 2
Line 3
Line 4
Line 5

Press d$ to delete from the cursor position to the end of the line:

The quick brown fox jumped over the lazy dog.
Line
Line
Line
Line

b wWN

Press dG to delete from the current line to the end of the file:

Press u three times to undo the deletion.

Cutting, Copying And Pasting Text

The d command not only deletes text, it also “cuts” text. Each time we use the d
command the deletion is copied into a paste buffer (think clipboard) that we can later
recall with the p command to paste the contents of the buffer after the cursor or the P
command to paste the contents before the cursor.

149

13 — A Gentle Introduction To vi

The y command is used to “yank” (copy) text in much the same way the d command is
used to cut text. Here are some examples combining the y command with various
movement commands:

Table13- 4: Yanking Commands

Command Copies

Yy The current line.

Syy The current line and the next four lines.

yw From the current cursor position to the beginning of
the next word.

y$ From the current cursor location to the end of the
current line.

yo From the current cursor location to the beginning of
the line.

yA From the current cursor location to the first non-
whitespace character in the line.

yG From the current line to the end of the file.

y20G From the current line to the twentieth line of the file.

Let's try some copy and paste. Place the cursor on the first line of the text and type yy to
copy the current line. Next, move the cursor to the last line (G) and type p to paste the
line below the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor still positioned on
the last line of the file, type P to paste the text above the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2

150

Basic Editing

Line 3
Line 4
The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try out some of the other y commands in the table above and get to know the behavior of
both the p and P commands. When you are done, return the file to its original state.

Joining Lines

V1 is rather strict about its idea of a line. Normally, it is not possible to move the cursor
to the end of a line and delete the end-of-line character to join one line with the one
below it. Because of this, Vi provides a specific command, J (not to be confused with j,
which is for cursor movement) to join lines together.

If we place the cursor on line 3 and type the J command, here's what happens:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2

Line 3 Line 4

Line 5

Search And Replace

v1 has the ability to move the cursor to locations based on searches. It can do this on
both a single line or over an entire file. It can also perform text replacements with or
without confirmation from the user.

Searching Within A Line

The f command searches a line and moves the cursor to the next instance of a specified
character. For example, the command fa would move the cursor to the next occurrence
of the character “a” within the current line. After performing a character search within a
line, the search may be repeated by typing a semicolon.

Searching The Entire File

To move the cursor to the next occurrence of a word or phrase, the / command is used.
This works the same way as we learned earlier in the 1ess program. When you type the
/ command a “/” will appear at the bottom of the screen. Next, type the word or phrase

151

13 — A Gentle Introduction To vi

to be searched for, followed by the Enter key. The cursor will move to the next
location containing the search string. A search may be repeated using the previous search
string with the n command. Here's an example:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Place the cursor on the first line of the file. Type:

/Line

followed by the Enter key. The cursor will move to line 2. Next, type n and the cursor
will move to line 3. Repeating the n command will move the cursor down the file until it
runs out of matches. While we have so far only used words and phrases for our search
patterns, Vi allows the use of regular expressions, a powerful method of expressing
complex text patterns. We will cover regular expressions in some detail in a later chapter.

Global Search And Replace

V1 uses an ex command to perform search and replace operations (called “substitution”
in v1) over a range of lines or the entire file. To change the word “Line” to “line” for the
entire file, we would enter the following command:

:%s/Line/line/g

Let's break this command down into separate items and see what each one does:

Item Meaning
The colon character starts an ex command.

% Specifies the range of lines for the operation. % is a shortcut
meaning from the first line to the last line. Alternately, the
range could have been specified 1, 5 (since our file is five
lines long), or 1, $ which means “from line 1 to the last line in
the file.” If the range of lines is omitted, the operation is only

152

Search And Replace

/Line/line/
g

performed on the current line.

Specifies the operation. In this case, substitution (search and
replace).

The search pattern and the replacement text.

This means “global” in the sense that the search and replace is
performed on every instance of the search string in the line. If
omitted, only the first instance of the search string on each line
is replaced.

After executing our search and replace command our file looks like this:

The quick brown fox jumped over the lazy dog. It was cool.

line 2
line 3
line 4
line 5

We can also specify a substitution command with user confirmation. This is done by
adding a “c” to the end of the command. For example:

:%s/1line/Line/gc

This command will change our file back to its previous form; however, before each
substitution, Vi stops and asks us to confirm the substitution with this message:

replace with Line (y/n/a/q/1/7E/NY)?

Each of the characters within the parentheses is a possible choice as follows:

Table 13-5: Replace Confirmation Keys

Key

y
n

a

Action
Perform the substitution.
Skip this instance of the pattern.

Perform the substitution on this and all subsequent instances

153

13 — A Gentle Introduction To vi

of the pattern.
g or Esc Quit substituting.
1 Perform this substitution and then quit. Short for “last.”

Ctrl-e, Ctrl-y Scroll down and scroll up, respectively. Useful for viewing
the context of the proposed substitution.

If you type Yy, the substitution will be performed, n will cause V1 to skip this instance and
move on to the next one.

Editing Multiple Files

It's often useful to edit more than one file at a time. You might need to make changes to
multiple files or you may need to copy content from one file into another. With vi we
can open multiple files for editing by specifying them on the command line:

vi filel file2 file3...

Let's exit our existing vi session and create a new file for editing. Type :w(q to exit vi
saving our modified text. Next, we'll create an additional file in our home directory that
we can play with. We'll create the file by capturing some output from the 1s command:

[me@linuxbox ~]$ 1s -1 /usr/bin > l1ls-output.txt

Let's edit our old file and our new one with vi:

[me@linuxbox ~]%$ vi foo.txt ls-output.txt

v1 will start up and we will see the first file on the screen:

fihe quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

154

Editing Multiple Files

Switching Between Files

To switch from one file to the next, use this ex command:
To move back to the previous file use:

While we can move from one file to another, v1 enforces a policy that prevents us from
switching files if the current file has unsaved changes. To force vi to switch files and
abandon your changes, add an exclamation point (!) to the command.

In addition to the switching method described above, vim (and some versions of v1i) also
provide some ex commands that make multiple files easier to manage. We can view a list
of files being edited with the :buffers command. Doing so will display a list of the
files at the bottom of the display:

:buffers
1 %a "foo.txt" line 1
2 "ls-output.txt" line O

Press ENTER or type command to continue

To switch to another buffer (file), type :buffer followed by the number of the buffer
you wish to edit. For example, to switch from buffer 1 which contains the file foo. txt
to buffer two containing the file 1s-output . txt we would type this:

:buffer 2

and our screen now displays the second file.

Opening Additional Files For Editing

It's also possible to add files to our current editing session. The ex command : e (short
for “edit”) followed by a filename will open an additional file. Let's end our current
editing session and return to the command line.

155

13 — A Gentle Introduction To vi

Start V1 again with just one file:

[me@linuxbox ~]$ vi foo.txt
To add our second file, enter:

:e ls-output.txt

And it should appear on the screen. The first file is still present as we can verify:

:buffers
1 # "foo.txt" line 1
2 %a "ls-output.txt" line ©

Press ENTER or type command to continue

Note: You cannot switch to files loaded with the : e command using either the :n
or :N command. To switch files, use the :buffer command followed by the
buffer number.

Copying Content From One File Into Another

Often while editing multiple files, we will want to copy a portion of one file into another
file that we are editing. This is easily done using the usual yank and paste commands we
used earlier. We can demonstrate as follows. First, using our two files, switch to buffer 1
(foo. txt) by entering:

:buffer 1

which should give us this:

156

Editing Multiple Files

fihe quick brown fox jumped over the lazy dog. It was cool.
Line
Line
Line
Line

abrwdN

Next, move the cursor to the first line, and type Yy to yank (copy) the line.

Switch to the second buffer by entering:

:buffer 2

The screen will now contain some file listings like this (only a portion is shown here):

ﬁotal 343700

-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 41i1toppm
-rwxr-xr-x 1 root root 111276 2008-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2007-05-04 17:43 aainfo

Move the cursor to the first line and paste the line we copied from the preceding file by
typing the p command:

total 343700

fghe quick brown fox jumped over the lazy dog. It was cool.
-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2008-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 ab52dec
-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2007-05-04 17:43 aainfo

Inserting An Entire File Into Another

It's also possible to insert an entire file into one that we are editing. To see this in action,
let's end our Vi session and start a new one with just a single file:

157

13 — A Gentle Introduction To vi

[me@linuxbox ~]$ vi ls-output.txt

We will see our file listing again:

ﬁotal 343700

-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwXxr-xr-x 1 root root 8240 2007-12-09 13:39 41i1toppm
-rwxr-xr-x 1 root root 111276 2008-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 ab52dec
-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2007-05-04 17:43 aainfo

Move the cursor to the third line, then enter the following ex command:

:r foo.txt

The :r command (short for “read”) inserts the specified file before the cursor position.
Our screen should now look like this:

total 343700

-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
fghe quick brown fox jumped over the lazy dog. It was cool.
Line 2

Line 3

Line 4

Line 5

-rwxr-xr-x 1 root root 111276 2008-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2007-05-04 17:43 aainfo

Saving Our Work

Like everything else in vi, there are several different ways to save our edited files. We
have already covered the ex command :w, but there are some others we may also find
helpful.

In command mode, typing ZZ will save the current file and exit vi. Likewise, the ex
command :wq will combine the :w and :qg commands into one that will both save the

158

Saving Our Work

file and exit.

The :w command may also specify an optional filename. This acts like “Save As...” For
example, if we were editing fo00.txt and wanted to save an alternate version called
fool. txt, we would enter the following:

:w fool.txt

Note: While the command above saves the file under a new name, it does not
change the name of the file you are editing. As you continue to edit, you will still
be editing foo . txt, not fool. txt.

Further Reading

Even with all that we have covered in this chapter, we have barely scratched the surface
of what vi and vim can do. Here are a couple of on-line resources you can use to
continue your journey towards V1 mastery:

e Learning The vi Editor — A Wikibook from Wikipedia that offers a concise guide
to V1 and several of its work-a-likes including vim. It's available at:
http://en.wikibooks.org/wiki/Vi

e The Vim Book - The vim project has a 570-page book that covers (almost) all of
the features in vim. You can find it at:
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf.

e A Wikipedia article on Bill Joy, the creator of vi.:
http://en.wikipedia.org/wiki/Bill Joy

e A Wikipedia article on Bram Moolenaar, the author of vim:
http://en.wikipedia.org/wiki/Bram Moolenaar

159

http://en.wikipedia.org/wiki/Bram_Moolenaar
http://en.wikipedia.org/wiki/Bill_Joy
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf
http://en.wikibooks.org/wiki/Vi

14 — Customizing The Prompt

14 - Customizing The Prompt

In this chapter we will look at a seemingly trivial detail—our shell prompt. This
examination will reveal some of the inner workings of the shell and the terminal emulator
program itself.

Like so many things in Linux, the shell prompt is highly configurable, and while we have
pretty much taken it for granted, the prompt is a really useful device once we learn how
to control it.

Anatomy Of A Prompt
Our default prompt looks something like this:

[me@linuxbox ~]$

Notice that it contains our user name, our host name and our current working directory,
but how did it get that way? Very simply, it turns out. The prompt is defined by an
environment variable named PS1 (short for “prompt string one”). We can view the
contents of PS1 with the echo command:

[me@linuxbox ~]$ echo $PS1
[\u@\h \W]\$

Note: Don't worry if your results are not exactly the same as the example above.
Every Linux distribution defines the prompt string a little differently, some quite
exotically.

From the results, we can see that PS1 contains a few of the characters we see in our
prompt such as the brackets, the at-sign, and the dollar sign, but the rest are a mystery.
The astute among us will recognize these as backslash-escaped special characters like

160

Anatomy Of A Prompt

those we saw in Chapter 8. Here is a partial list of the characters that the shell treats
specially in the prompt string:

Table 14-1: Escape Codes Used In Shell Prompts

Sequence
\a

\d

\h
\H
\J

\1
\n
\r
\s
\t
\T
\@
\A
\u
\v
\V
\w
\W
\!

\#
\$

\

Value Displayed
ASCII bell. This makes the computer beep when it is encountered.

Current date in day, month, date format. For example, “Mon May
26.”

Host name of the local machine minus the trailing domain name.
Full host name.

Number of jobs running in the current shell session.
Name of the current terminal device.

A newline character.

A carriage return.

Name of the shell program.

Current time in 24 hour hours:minutes:seconds format.
Current time in 12 hour format.

Current time in 12 hour AM/PM format.

Current time in 24 hour hours:minutes format.

User name of the current user.

Version number of the shell.

Version and release numbers of the shell.

Name of the current working directory.

Last part of the current working directory name.
History number of the current command.

Number of commands entered into this shell session.

This displays a “$” character unless you have superuser privileges.
In that case, it displays a “#” instead.

Signals the start of a series of one or more non-printing characters.
This is used to embed non-printing control characters which
manipulate the terminal emulator in some way, such as moving the

161

14 — Customizing The Prompt

cursor or changing text colors.

\1] Signals the end of a non-printing character sequence.

Trying Some Alternate Prompt Designs

With this list of special characters, we can change the prompt to see the effect. First,
we'll back up the existing string so we can restore it later. To do this, we will copy the
existing string into another shell variable that we create ourselves:

[me@linuxbox ~]$ psli_old="$PS1"

We create a new variable called ps1_old and assign the value of PS1 to it. We can
verify that the string has been copied with the echo command:

[me@linuxbox ~]$ echo $psi_old
[\u@\h \W]\$

We can restore the original prompt at any time during our terminal session by simply
reversing the process:

[me@linuxbox ~]$ PS1="$ps1_old"

Now that we are ready to proceed, let's see what happens if we have an empty prompt
string:

[me@linuxbox ~]$ PS1=

If we assign nothing to the prompt string, we get nothing. No prompt string at all! The
prompt is still there, but displays nothing, just as we asked it to. Since this is kind of
disconcerting to look at, we'll replace it with a minimal prompt:

PS1="\$ "

That's better. At least now we can see what we are doing. Notice the trailing space
within the double quotes. This provides the space between the dollar sign and the cursor

162

Trying Some Alternate Prompt Designs

when the prompt is displayed.
Let's add a bell to our prompt:

$ PS1="\a\$ "

Now we should hear a beep each time the prompt is displayed. This could get annoying,
but it might be useful if we needed notification when an especially long-running
command has been executed.

Next, let's try to make an informative prompt with some host name and time-of-day
information:

17:33 linuxbox $

$ PS1="\A \h \$ "

Adding time-of-day to our prompt will be useful if we need to keep track of when we
perform certain tasks. Finally, we'll make a new prompt that is similar to our original:

17:37 linuxbox $ PS1="<\u@\h \w>\$ "
<me@linuxbox ~>$

Try out the other sequences listed in the table above and see if you can come up with a
brilliant new prompt.

Adding Color

Most terminal emulator programs respond to certain non-printing character sequences to
control such things as character attributes (like color, bold text and the dreaded blinking
text) and cursor position. We'll cover cursor position in a little bit, but first we'll look at
color.

Terminal Confusion

Back in ancient times, when terminals were hooked to remote computers, there
were many competing brands of terminals and they all worked differently. They
had different keyboards and they all had different ways of interpreting control

163

14 — Customizing The Prompt

information. Unix and Unix-like systems have two rather complex subsystems to
deal with the babel of terminal control (called termcap and terminfo). If
you look in the deepest recesses of your terminal emulator settings you may find
a setting for the type of terminal emulation.

In an effort to make terminals speak some sort of common language, the
American National Standards Institute (ANSI) developed a standard set of
character sequences to control video terminals. Old time DOS users will
remember the ANSI.SYS file that was used to enable interpretation of these
codes.

Character color is controlled by sending the terminal emulator an ANSI escape code
embedded in the stream of characters to be displayed. The control code does not “print
out” on the display, rather it is interpreted by the terminal as an instruction. As we saw in
the table above, the \ [and \] sequences are used to encapsulate non-printing characters.
An ANSI escape code begins with an octal 033 (the code generated by the escape key)
followed by an optional character attribute followed by an instruction. For example, the
code to set the text color to normal (attribute = 0), black text is:

\033[0;30m

Here is a table of available text colors. Notice that the colors are divided into two groups,
differentiated by the application of the bold character attribute (1) which creates the
appearance of “light” colors:

Table14- 2: Escape Sequences Used To Set Text Colors

Sequence Text Color Sequence Text Color
\033[0;30m Black \033[1;30m Dark Gray
\033[0;31m Red \033[1;31m Light Red
\033[0;32m Green \033[1;32m Light Green
\033[0;33m Brown \033[1;33m Yellow
\033[0;34m Blue \033[1;34m Light Blue
\033[0;35m Purple \033[1;35m Light Purple
\033[0;36m Cyan \033[1;36m Light Cyan
\033[0;37m Light Grey \033[1;37m White

Let's try to make a red prompt. We'll insert the escape code at the beginning:

164

Adding Color

<me@linuxbox ~>$

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$ "

That works, but notice that all the text that we type after the prompt is also red. To fix
this, we will add another escape code to the end of the prompt that tells the terminal
emulator to return to the previous color:

<me@linuxbox ~>$

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[Om\] "

That's better!

It's also possible to set the text background color using the codes listed below. The
background colors do not support the bold attribute.

Table 14-3: Escape Sequences Used To Set Background Color

Sequence Background Color Sequence Background Color
\033[0;40m Black \033[0;44m Blue

\033[0;41m Red \033[0;45m Purple
\033[0;42m Green \033[0;46m Cyan

\033[0;43m Brown \033[0;47m Light Grey

We can create a prompt with a red background by applying a simple change to the first
escape code:

<me@linuxbox ~>% PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[Oom\] "

Try out the color codes and see what you can create!

Note: Besides the normal (0) and bold (1) character attributes, text may also be
given underscore (4), blinking (5), and inverse (7) attributes as well. In the
interests of good taste, many terminal emulators refuse to honor the blinking
attribute, however.

165

14 — Customizing The Prompt

Moving The Cursor

Escape codes can be used to position the cursor. This is commonly used to provide a
clock or some other kind of information at a different location on the screen such as an
upper corner each time the prompt is drawn. Here is a list of the escape codes that

position the cursor:

Table 14-4: Cursor Movement Escape Sequences

Escape Code
\033[1;cH
\033[nA
\033[nB
\033[nC
\033[nD
\033[2J

\033[K
\033[s
\033[u

Action

Move the cursor to line [and column c.
Move the cursor up n lines.

Move the cursor down n lines.

Move the cursor forward n characters.
Move the cursor backward n characters.

Clear the screen and move the cursor to the upper left corner (line
0, column 0).

Clear from the cursor position to the end of the current line.
Store the current cursor position.

Recall the stored cursor position.

Using the codes above, we'll construct a prompt that draws a red bar at the top of the
screen containing a clock (rendered in yellow text) each time the prompt is displayed.
The code for the prompt is this formidable looking string:

PS1="\[\033[s\033[0; 0H\033[0; 41m\033[K\033[1;33m\t\033[0m\033[u\]

<\u@\h \W>\$ "

Let's take a look at each part of the string to see what it does:

Sequence
\

\033[s

Action

Begins a non-printing character sequence. The real purpose of
this is to allow bash to correctly calculate the size of the
visible prompt. Without this, command line editing features
will improperly position the cursor.

Store the cursor position. This is needed to return to the prompt

166

Moving The Cursor

location after the bar and clock have been drawn at the top of
the screen. Be aware that some terminal emulators do not
honor this code.

\033[0;0H Move the cursor to the upper left corner, which is line zero,
column zero.

\033[0;41m Set the background color to red.

\033[K Clear from the current cursor location (the top left corner) to

the end of the line. Since the background color is now red, the
line is cleared to that color creating our bar. Note that clearing
to the end of the line does not change the cursor position, which
remains at the upper left corner.

\033[1;33m Set the text color to yellow.

\t Display the current time. While this is a “printing” element, we
still include it in the non-printing portion of the prompt, since
we don't want bash to include the clock when calculating the
true size of the displayed prompt.

\033[0Om Turn off color. This affects both the text and background.
\033[u Restore the cursor position saved earlier.
\] End non-printing characters sequence.

<\u@\h \W>\$ Prompt string.

Saving The Prompt

Obviously, we don't want to be typing that monster all the time, so we'll want to store our
prompt someplace. We can make the prompt permanent by adding it to our .bashrc
file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0; 0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]
<\u@\h \w>\$ "

export PS1

Summing Up

Believe it or not, there is much more that can be done with prompts involving shell
functions and scripts that we haven't covered here, but this is a good start. Not everyone

167

14 — Customizing The Prompt

will care enough to change the prompt, since the default prompt is usually satisfactory.
But for those of us who like to tinker, the shell provides the opportunity for many hours
of trivial fun.

Further Reading

e The Bash Prompt HOWTO from the Linux Documentation Project provides a
pretty complete discussion of what the shell prompt can be made to do. It is

available at:
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/

e Wikipedia has a good article on the ANSI Escape Codes:
http://en.wikipedia.org/wiki/ANSI_escape_code

168

http://en.wikipedia.org/wiki/ANSI_escape_code
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/
http://tldp.org/

Part 4 — Common Tasks And Essential Tools

Part 4 — Common Tasks And Essential
Tools

169

15 — Package Management

15 - Package Management

If we spend any time in the Linux community, we hear many opinions as to which of the
many Linux distributions is “best.” Often, these discussions get really silly, focusing on
such things as the prettiness of the desktop background (some people won't use Ubuntu
because its default color scheme is brown!) and other trivial matters.

The most important determinant of distribution quality is the packaging system and the
vitality of the distribution's support community. As we spend more time with Linux, we
see that its software landscape is extremely dynamic. Things are constantly changing.
Most of the top-tier Linux distributions release new versions every six months and many
individual program updates every day. To keep up with this blizzard of software, we
need good tools for package management.

Package management is a method of installing and maintaining software on the system.
Today, most people can satisfy all of their software needs by installing packages from
their Linux distributor. This contrasts with the early days of Linux, when one had to
download and compile source code in order to install software. Not that there is anything
wrong with compiling source code; in fact, having access to source code is the great
wonder of Linux. It gives us (and everybody else) the ability to examine and improve the
system. It's just that having a pre-compiled package is faster and easier to deal with.

In this chapter, we will look at some of the command line tools used for package
management. While all of the major distributions provide powerful and sophisticated
graphical programs for maintaining the system, it is important to learn about the
command line programs, too. They can perform many tasks that are difficult (or
impossible) to do with their graphical counterparts.

Packaging Systems

Different distributions use different packaging systems and as a general rule, a package
intended for one distribution is not compatible with another distribution. Most
distributions fall into one of two camps of packaging technologies: the Debian “.deb”
camp and the Red Hat “.rpm” camp. There are some important exceptions such as
Gentoo, Slackware, and Foresight, but most others use one of these two basic systems.

170

Packaging Systems

Table 15-1: Major Packaging System Families

Packaging System Distributions (Partial Listing)
Debian Style (.deb) Debian, Ubuntu, Xandros, Linspire

Red Hat Style (.rpm) Fedora, CentOS, Red Hat Enterprise Linux, OpenSUSE,
Mandriva, PCLinuxOS

How A Package System Works

The method of software distribution found in the proprietary software industry usually
entails buying a piece of installation media such as an “install disk” and then running an
“installation wizard” to install a new application on the system.

Linux doesn't work that way. Virtually all software for a Linux system will be found on
the Internet. Most of it will be provided by the distribution vendor in the form of
package files and the rest will be available in source code form that can be installed
manually. We'll talk a little about how to install software by compiling source code in a
later chapter.

Package Files

The basic unit of software in a packaging system is the package file. A package file is a
compressed collection of files that comprise the software package. A package may
consist of numerous programs and data files that support the programs. In addition to the
files to be installed, the package file also includes metadata about the package, such as a
text description of the package and its contents. Additionally, many packages contain
pre- and post-installation scripts that perform configuration tasks before and after the
package installation.

Package files are created by a person known as a package maintainer, often (but not
always) an employee of the distribution vendor. The package maintainer gets the
software in source code form from the upstream provider (the author of the program),
compiles it, and creates the package metadata and any necessary installation scripts.
Often, the package maintainer will apply modifications to the original source code to
improve the program's integration with the other parts of the Linux distribution.

Repositories

While some software projects choose to perform their own packaging and distribution,
most packages today are created by the distribution vendors and interested third parties.
Packages are made available to the users of a distribution in central repositories that may
contain many thousands of packages, each specially built and maintained for the
distribution.

171

15 — Package Management

A distribution may maintain several different repositories for different stages of the
software development life cycle. For example, there will usually be a “testing”
repository that contains packages that have just been built and are intended for use by
brave souls who are looking for bugs before they are released for general distribution. A
distribution will often have a “development” repository where work-in-progress packages
destined for inclusion in the distribution's next major release are kept.

A distribution may also have related third-party repositories. These are often needed to
supply software that, for legal reasons such as patents or DRM anti-circumvention issues,
cannot be included with the distribution. Perhaps the best known case is that of
encrypted DVD support, which is not legal in the United States. The third-party
repositories operate in countries where software patents and anti-circumvention laws do
not apply. These repositories are usually wholly independent of the distribution they
support and to use them, one must know about them and manually include them in the
configuration files for the package management system.

Dependencies

Programs seldom “standalone;” rather they rely on the presence of other software
components to get their work done. Common activities, such as input/output for
example, are handled by routines shared by many programs. These routines are stored in
what are called shared libraries, which provide essential services to more than one
program. If a package requires a shared resource such as a shared library, it is said to
have a dependency. Modern package management systems all provide some method of
dependency resolution to ensure that when a package is installed, all of its dependencies
are installed, too.

High And Low-level Package Tools

Package management systems usually consist of two types of tools: low-level tools which
handle tasks such as installing and removing package files, and high-level tools that
perform metadata searching and dependency resolution. In this chapter, we will look at
the tools supplied with Debian-style systems (such as Ubuntu and many others) and those
used by recent Red Hat products. While all Red Hat-style distributions rely on the same
low-level program (rpm), they use different high-level tools. For our discussion, we will
cover the high-level program yum, used by Fedora, Red Hat Enterprise Linux, and
CentOS. Other Red Hat-style distributions provide high-level tools with comparable
features.

Tablel5- 2: Packaging System Tools

Distributions Low-Level Tools High-Level Tools
Debian-Style dpkg apt-get, aptitude

172

How A Package System Works

Fedora, Red Hat rpm yum
Enterprise Linux, CentOS

Common Package Management Tasks

There are many operations that can be performed with the command line package
management tools. We will look at the most common. Be aware that the low-level tools
also support creation of package files, an activity outside the scope of this book.

In the discussion below, the term “package_name” refers to the actual name of a
package rather than the term “package_file,” which is the name of the file that
contains the package.

Finding A Package In A Repository

Using the high-level tools to search repository metadata, a package can be located based
on its name or description.

Table 15-3: Package Search Commands

Style Command(s)

Debian apt-get update
apt-cache search search_string

Red Hat yum search search_string

Example: To search a yum repository for the emacs text editor, this command could be
used:

yum search emacs

Installing A Package From A Repository

High-level tools permit a package to be downloaded from a repository and installed with
full dependency resolution.

Table 15-4: Package Installation Commands

Style Command(s)
Debian apt-get update

173

15 — Package Management

apt-get install package_name

Red Hat yum install package_name

Example: To install the emacs text editor from an apt repository:

apt-get update; apt-get install emacs

Installing A Package From A Package File

If a package file has been downloaded from a source other than a repository, it can be
installed directly (though without dependency resolution) using a low-level tool.

Table 15-5: Low-Level Package Installation Commands

Style Command(s)
Debian dpkg --install package_file
Red Hat rpm -1 package_file

Example: If the emacs-22.1-7.fc7-1386.rpm package file had been downloaded
from a non-repository site, it would be installed this way:

rpm -i emacs-22.1-7.fc7-1386.rpm

Note: Since this technique uses the low-level rpm program to perform the
installation, no dependency resolution is performed. If rpm discovers a missing
dependency, rpm will exit with an error.

Removing A Package

Packages can be uninstalled using either the high-level or low-tools. The high-level tools
are shown below.

174

Common Package Management Tasks

Tablel5- 6: Package Removal Commands

Style Command(s)
Debian apt-get remove package_name
Red Hat yum erase package_name

Example: To uninstall the emacs package from a Debian-style system:

apt-get remove emacs

Updating Packages From A Repository

The most common package management task is keeping the system up-to-date with the
latest packages. The high-level tools can perform this vital task in one single step.

Table 15-7: Package Update Commands

Style Command(s)
Debian apt-get update; apt-get upgrade
Red Hat yum update

Example: To apply any available updates to the installed packages on a Debian-style
system:

apt-get update; apt-get upgrade

Upgrading A Package From A Package File

If an updated version of a package has been downloaded from a non-repository source, it
can be installed, replacing the previous version:

Table 15-8: Low-Level Package Upgrade Commands

Style Command(s)
Debian dpkg --install package_file

175

15 — Package Management

Red Hat rpm -U package_file

Example: Updating an existing installation of emacs to the version contained in the
package file emacs-22.1-7.fc7-1386.rpmon a Red Hat system:

rpm -U emacs-22.1-7.fc7-1386.rpm

Note: dpkg does not have a specific option for upgrading a package versus
installing one as rpm does.

Listing Installed Packages

These commands can be used to display a list of all the packages installed on the system:

Table 15-9: Package Listing Commands

Style Command(s)
Debian dpkg --1list
Red Hat rpm -qa

Determining If A Package Is Installed

These low-level tools can be used to display whether a specified package is installed:

Table 15-10: Package Status Commands

Style Command(s)
Debian dpkg --status package_name
Red Hat rpm -gq package_name

Example: To determine if the emacs package is installed on a Debian style system:

dpkg --status emacs

176

Common Package Management Tasks

Displaying Info About An Installed Package

If the name of an installed package is known, the following commands can be used to
display a description of the package:

Table 15-11: Package Information Commands

Style Command(s)
Debian apt-cache show package_name
Red Hat yum info package_name

Example: To see a description of the emacs package on a Debian-style system:

apt-cache show emacs

Finding Which Package Installed A File

To determine what package is responsible for the installation of a particular file, the
following commands can be used:

Table 15-12: Package File Identification Commands

Style Command(s)
Debian dpkg --search file_name
Red Hat rpm -qf file_name

Example: To see what package installed the /usr/bin/vim file on a Red Hat system:

rpm -qf /usr/bin/vim

Summing Up

In the chapters that follow, we will explore many different programs covering a wide
range of application areas. While most of these programs are commonly installed by
default, we may need to install additional packages if necessary programs are not already
installed on our system. With our newfound knowledge (and appreciation) of package

177

15 — Package Management

management, we should have no problem installing and managing the programs we need.

The Linux Software Installation Myth

People migrating from other platforms sometimes fall victim to the myth that
software is somehow difficult to install under Linux and that the variety of
packaging schemes used by different distributions is a hindrance. Well, it is a
hindrance, but only to proprietary software vendors who wish to distribute binary-
only versions of their secret software.

The Linux software ecosystem is based on the idea of open source code. If a
program developer releases source code for a product, it is likely that a person
associated with a distribution will package the product and include it in their
repository. This method ensures that the product is well integrated into the
distribution and the user is given the convenience of “one-stop shopping” for
software, rather than having to search for each product's web site.

Device drivers are are handled in much the same way, except that instead of being
separate items in a distribution's repository, they become part of the Linux kernel
itself. Generally speaking, there is no such thing as a “driver disk” in Linux.
Either the kernel supports a device or it doesn't, and the Linux kernel supports a
lot of devices. Many more, in fact, than Windows does. Of course, this is of no
consolation if the particular device you need is not supported. When that
happens, you need to look at the cause. A lack of driver support is usually caused
by one of three things:

1. The device is too new. Since many hardware vendors don't actively support
Linux development, it falls upon a member of the Linux community to write the
kernel driver code. This takes time.

2. The device is too exotic. Not all distributions include every possible device
driver. Each distribution builds their own kernels, and since kernels are very
configurable (which is what makes it possible to run Linux on everything from
wristwatches to mainframes) they may have overlooked a particular device. By
locating and downloading the source code for the driver, it is possible for you
(yes, you) to compile and install the driver yourself. This process is not overly
difficult, but it is rather involved. We'll talk about compiling software in a later
chapter.

3. The hardware vendor is hiding something. They have neither released
source code for a Linux driver, nor have they released the technical
documentation for somebody to create one for them. This means that the
hardware vendor is trying to keep the programming interfaces to the device a

178

Summing Up

secret. Since we don't want secret devices in our computers, I suggest that you
remove the offending hardware and pitch it into the trash, with your other useless
items.

Further Reading

Spend some time getting to know the package management system for your distribution.
Each distribution provides documentation for its package management tools. In addition,
here are some more generic sources:

e The Debian GNU/Linux FAQ chapter on package management provides an
overview of package management on Debian systems :
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

e The home page for the RPM project:
http://www.rpm.org

e The home page for the YUM project at Duke University:
http://linux.duke.edu/projects/yum/

e For a little background, the Wikipedia has an article on metadata:
http://en.wikipedia.org/wiki/Metadata

179

http://en.wikipedia.org/wiki/Metadata
http://linux.duke.edu/projects/yum/
http://www.rpm.org/
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

16 — Storage Media

16 - Storage Media

In previous chapters we’ve looked at manipulating data at the file level. In this chapter,
we will consider data at the device level. Linux has amazing capabilities for handling
storage devices, whether physical storage, such as hard disks, or network storage, or
virtual storage devices like RAID (Redundant Array of Independent Disks) and LVM
(Logical Volume Manager).

However, since this is not a book about system administration, we will not try to cover
this entire topic in depth. What we will try to do is introduce some of the concepts and
key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive, a CD-RW disk
(for systems equipped with a CD-ROM burner) and a floppy disk (again, if the system is
so equipped.)

We will look at the following commands:
e mount —Mount a file system
e umount — Unmount a file system
e Tfsck — Check and repair a file system
e TfTdisk — Partition table manipulator
e mKkfs — Create a file system
e fdformat — Format a floppy disk
e dd — Write block oriented data directly to a device
e genisoimage (mkisofs) — Create an ISO 9660 image file
e wodim (cdrecord) — Write data to optical storage media

e md5sum — Calculate an MD5 checksum

Mounting And Unmounting Storage Devices

Recent advances in the Linux desktop have made storage device management extremely

180

Mounting And Unmounting Storage Devices

easy for desktop users. For the most part, we attach a device to our system and it “just
works.” Back in the old days (say, 2004), this stuff had to be done manually. On non-
desktop systems (i.e., servers) this is still a largely manual procedure since servers often
have extreme storage needs and complex configuration requirements.

The first step in managing a storage device is attaching the device to the file system tree.
This process, called mounting, allows the device to participate with the operating system.
As we recall from Chapter 3, Unix-like operating systems, like Linux, maintain a single
file system tree with devices attached at various points. This contrasts with other
operating systems such as MS-DOS and Windows that maintain separate trees for each
device (for example C: \, D: \, etc.).

There is a file named /etc/fstab that lists the devices (typically hard disk partitions)
that are to be mounted at boot time. Here is an example /etc/fstab file from a
Fedora 7 system:

LABEL=/12 / ext3 defaults 11
LABEL=/home /home ext3 defaults 12
LABEL=/boot /boot ext3 defaults 12
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 O
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
LABEL=SWAP-sda3 swap swap defaults 00

Most of the file systems listed in this example file are virtual and are not applicable to our
discussion. For our purposes, the interesting ones are the first three:

LABEL=/12 / ext3 defaults 11
LABEL=/home /home ext3 defaults 12
LABEL=/boot /boot ext3 defaults 12

These are the hard disk partitions. Each line of the file consists of six fields, as follows:

Table 16-1: /etc/fstab Fields

Field Contents Description

1 Device Traditionally, this field contains the actual name of a
device file associated with the physical device, such as
/dev/hdal (the first partition of the master device
on the first IDE channel). But with today's computers,
which have many devices that are hot pluggable (like

181

16 — Storage Media

USB drives), many modern Linux distributions
associate a device with a text label instead. This label
(which is added to the storage media when it is
formatted) is read by the operating system when the
device is attached to the system. That way, no matter
which device file is assigned to the actual physical
device, it can still be correctly identified.

2 Mount Point The directory where the device is attached to the file
system tree.

3 File System Type = Linux allows many file system types to be mounted.
Most native Linux file systems are ext3, but many
others are supported, such as FAT16 (msdos), FAT32
(vfat), NTFS (ntfs), CD-ROM (1509660), etc.

4 Options File systems can be mounted with various options. It
is possible, for example, to mount file systems as
read-only, or prevent any programs from being
executed from them (a useful security feature for
removable media.)

5 Frequency A single number that specifies if and when a file
system is to be backed up with the dump command.

6 Order A single number that specifies in what order file
systems should be checked with the fsck command.

Viewing A List Of Mounted File Systems

The mount command is used to mount file systems. Entering the command without
arguments will display a list of the file systems currently mounted:

[me@linuxbox ~]$ mount

/dev/sda2 on / type ext3 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda5 on /home type ext3 (rw)

/dev/sdal on /boot type ext3 (rw)

tmpfs on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

182

Mounting And Unmounting Storage Devices

fusectl on /sys/fs/fuse/connections type fusectl (rw)

/dev/sdd1 on /media/disk type vfat (rw,nosuid,nodev,noatime,
uhelper=hal, uid=500, utf8, shortname=1ower)

twind:/musicbox on /misc/musichbox type nfs4 (rw,addr=192.168.1.4)

The format of the listing is: device on mount_point type file_system_type (options). For
example, the first line shows that device /dev/sda2 is mounted as the root file system
and it is of type ext3 and is both readable and writable (the option “rw”). This listing also
has two interesting entries at the bottom of the list. The next to last entry shows a 2
gigabyte SD memory card in a card reader mounted at /media/disk, and the last entry
is a network drive mounted at /misc/musichbox.

For our first experiment, we will work with a CD-ROM. First, let's look at a system
before a CD-ROM is inserted:

[me@linuxbox ~]$ mount

/dev/mapper/VolGroup00-LogVoleO on / type ext3 (rw)
proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hdal on /boot type ext3 (rw)

tmpfs on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

This listing is from a CentOS 5 system, which is using LVM (Logical Volume Manager)
to create its root file system. Like many modern Linux distributions, this system will
attempt to automatically mount the CD-ROM after insertion. After we insert the disk, we
see the following:

[me@linuxbox ~]$ mount

/dev/mapper/VolGroup00-LogVoleO on / type ext3 (rw)
proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hdal on /boot type ext3 (rw)

tmpfs on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/hdc on /media/live-1.0.10-8 type 1s09660 (ro,noexec,nosuid,
nodev, uid=500)

After we insert the disk, we see the same listing as before with one additional entry. At

183

16 — Storage Media

the end of the listing we see that the CD-ROM (which is device /dev/hdc on this
system) has been mounted on /media/live-1.0.10-8, and is type is09660 (a CD-
ROM). For purposes of our experiment, we're interested in the name of the device.
When you conduct this experiment yourself, the device name will most likely be
different.

Warning: In the examples that follow, it is vitally important that you pay close
attention to the actual device names in use on your system and do not use the
names used in this text!

Also note that audio CDs are not the same as CD-ROMs. Audio CDs do not
contain file systems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let's unmount the disk and
remount it another location in the file system tree. To do this, we become the superuser
(using the command appropriate for our system) and unmount the disk with the umount
(notice the spelling) command:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]# umount /dev/hdc

The next step is to create a new mount point for the disk. A mount point is simply a
directory somewhere on the file system tree. Nothing special about it. It doesn't even
have to be an empty directory, though if you mount a device on a non-empty directory,
you will not be able to see the directory's previous contents until you unmount the device.
For our purposes, we will create a new directory:

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option is used to
specify the file system type:

[root@linuxbox ~]# mount -t is09660 /dev/hdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new mount point:

184

Mounting And Unmounting Storage Devices

[root@linuxbox ~]# cd /mnt/cdrom
[root@linuxbox cdrom]# 1s

Notice what happens when we try to unmount the CD-ROM:

[root@linuxbox cdrom]# umount /dev/hdc
umount: /mnt/cdrom: device is busy

Why is this? The reason is that we cannot unmount a device if the device is being used
by someone or some process. In this case, we changed our working directory to the
mount point for the CD-ROM, which causes the device to be busy. We can easily remedy
the issue by changing the working directory to something other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/hdc

Now the device unmounts successfully.

Why Unmounting Is Important

If you look at the output of the free command, which displays statistics about
memory usage, you will see a statistic called “buffers.” Computer systems are
designed to go as fast as possible. One of the impediments to system speed is
slow devices. Printers are a good example. Even the fastest printer is extremely
slow by computer standards. A computer would be very slow indeed if it had to
stop and wait for a printer to finish printing a page. In the early days of PCs
(before multi-tasking), this was a real problem. If you were working on a
spreadsheet or text document, the computer would stop and become unavailable
every time you printed. The computer would send the data to the printer as fast as
the printer could accept it, but it was very slow since printers don't print very fast.
This problem was solved by the advent of the printer buffer, a device containing
some RAM memory that would sit between the computer and the printer. With
the printer buffer in place, the computer would send the printer output to the
buffer and it would quickly be stored in the fast RAM so the computer could go
back to work without waiting. Meanwhile, the printer buffer would slowly spool
the data to the printer from the buffer's memory at the speed at which the printer
could accept it.

185

16 — Storage Media

This idea of buffering is used extensively in computers to make them faster.
Don't let the need to occasionally read or write data to/from slow devices impede
the speed of the system. Operating systems store data read from, and to be
written to storage devices in memory for as long as possible before actually
having to interact with the slower device. On a Linux system for example, you
will notice that the system seems to fill up memory the longer it is used. This
does not mean Linux is “using®“ all the memory, it means that Linux is taking
advantage of all the available memory to do as much buffering as it can.

This buffering allows writing to storage devices to be done very quickly, because
the writing to the physical device is being deferred to a future time. In the
meantime, the data destined for the device is piling up in memory. From time to
time, the operating system will write this data to the physical device.

Unmounting a device entails writing all the remaining data to the device so that it
can be safely removed. If the device is removed without unmounting it first, the
possibility exists that not all the data destined for the device has been transferred.
In some cases, this data may include vital directory updates, which will lead to
file system corruption, one of the worst things that can happen on a computer.

Determining Device Names

It's sometimes difficult to determine the name of a device. Back in the old days, it wasn't
very hard. A device was always in the same place and it didn't change. Unix-like
systems like it that way. Back when Unix was developed, “changing a disk drive”
involved using a forklift to remove a washing machine-sized device from the computer
room. In recent years, the typical desktop hardware configuration has become quite
dynamic and Linux has evolved to become more flexible than its ancestors.

In the examples above we took advantage of the modern Linux desktop's ability to
“automagically” mount the device and then determine the name after the fact. But what
if we are managing a server or some other environment where this does not occur? How
can we figure it out?

First, let's look at how the system names devices. If we list the contents of the /dev
directory (where all devices live), we can see that there are lots and lots of devices:

[me@linuxbox ~]$ 1ls /dev

The contents of this listing reveal some patterns of device naming. Here are a few:

186

Mounting And Unmounting Storage Devices

Table 16-2: Linux Storage Device Names

Pattern Device
/dev/fd* Floppy disk drives.
/dev/hd* IDE (PATA) disks on older systems. Typical motherboards

contain two IDE connectors or channels, each with a cable with
two attachment points for drives. The first drive on the cable is
called the master device and the second is called the slave
device. The device names are ordered such that /dev/hda
refers to the master device on the first channel, /dev/hdb is the
slave device on the first channel; /dev/hdc, the master device
on the second channel, and so on. A trailing digit indicates the
partition number on the device. For example, /dev/hdal refers
to the first partition on the first hard drive on the system while /
dev/hda refers to the entire drive.

/dev/1p* Printers.

/dev/sd* SCSI disks. On recent Linux systems, the kernel treats all disk-
like devices (including PATA/SATA hard disks, flash drives, and
USB mass storage devices, such as portable music players and
digital cameras) as SCSI disks. The rest of the naming system is
similar to the older /dev/hd* naming scheme described above.

/dev/sr* Optical drives (CD/DVD readers and burners)

In addition, we often see symbolic links such as /dev/cdrom, /dev/dvd and /dev/
floppy, which point to the actual device files, provided as a convenience.

If you are working on a system that does not automatically mount removable devices,
you can use the following technique to determine how the removable device is named
when it is attached. First, start a real-time view of the /var/log/messages file (you
may require superuser privileges for this):

[me@linuxbox ~]$ sudo tail -f /var/log/messages

The last few lines of the file will be displayed and then pause. Next, plug in the
removable device. In this example, we will use a 16 MB flash drive. Almost
immediately, the kernel will notice the device and probe it:

187

16 — Storage Media

Jul 23 10:07:53 linuxbox kernel: usb 3-2: new full speed USB device
using uhci_hcd and address 2

Jul 23 10:07:53 linuxbox kernel: usb 3-2: configuration #1 chosen
from 1 choice

Jul 23 10:07:53 linuxbox kernel: scsi3 : SCSI emulation for USB Mass
Storage devices

Jul 23 10:07:58 linuxbox kernel: scsi scan: INQUIRY result too short
(5), using 36

Jul 23 10:07:58 linuxbox kernel: scsi 3:0:0:0: Direct-Access Easy
Disk 1.00 PQ: O ANSI: 2

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte
hardware sectors (16 MB)

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is
of f

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive
cache: write through

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte
hardware sectors (16 MB)

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is
off

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive
cache: write through

Jul 23 10:07:59 linuxbox kernel: sdb: sdbil

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI
removable disk

Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: Attached scsi generic
sg3 type 0

After the display pauses again, type Ctrl-c to get the prompt back. The interesting parts
of the output are the repeated references to “[sdb]” which matches our expectation of a
SCSI disk device name. Knowing this, two lines become particularly illuminating:

Jul 23 10:07:59 linuxbox kernel: sdb: sdbil
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI
removable disk

This tells us the device name is /dev/sdb for the entire device and /dev/sdb1l for
the first partition on the device. As we have seen, working with Linux is full of
interesting detective work!

Tip: Using the tail -f /var/log/messages technique is a great way to
watch what the system is doing in near real-time.

With our device name in hand, we can now mount the flash drive:

188

Mounting And Unmounting Storage Devices

[me@linuxbox ~]%$ sudo mkdir /mnt/flash
[me@linuxbox ~]$ sudo mount /dev/sdbl /mnt/flash
[me@linuxbox ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5186944 9775164 35% /
/dev/sda5 59631908 31777376 24776480 57% /home
/dev/sdal 147764 17277 122858 13% /boot
tmpfs 776808 0 776808 0% /dev/shm
/dev/sdb1 15560 (0] 15560 0% /mnt/flash

The device name will remain the same as long as it remains physically attached to the
computer and the computer is not rebooted.

Creating New File Systems

Let's say that we want to reformat the flash drive with a Linux native file system, rather
than the FAT32 system it has now. This involves two steps: 1. (optional) create a new
partition layout if the existing one is not to our liking, and 2. create a new, empty file
system on the drive.

Warning! In the following exercise, we are going to format a flash drive. Use a
drive that contains nothing you care about because it will be erased! Again, make
absolutely sure you are specifying the correct device name for your system, not
the one shown in the text. Failure to heed this warning could result in you
formatting (i.e., erasing) the wrong drive!

Manipulating Partitions With fdisk

The fdisk program allows us to interact directly with disk-like devices (such as hard
disk drives and flash drives) at a very low level. With this tool we can edit, delete, and
create partitions on the device. To work with our flash drive, we must first unmount it (if
needed) and then invoke the fdisk program as follows:

[me@linuxbox ~]$ sudo umount /dev/sdbil
[me@linuxbox ~]$ sudo fdisk /dev/sdb

Notice that we must specify the device in terms of the entire device, not by partition
number. After the program starts up, we will see the following prompt:

189

16 — Storage Media

Command (m for help):

Entering an “m” will display the program menu:

Command action

toggle a bootable flag

edit bsd disklabel

toggle the dos compatibility flag
delete a partition

list known partition types

print this menu

add a new partition

create a new empty DOS partition table
print the partition table

quit without saving changes

create a new empty Sun disklabel
change a partition's system id
change display/entry units

verify the partition table

write table to disk and exit
extra functionality (experts only)

X =< cCtwWOTOS>SSHAOAOT®D

Command (m for help):

The first thing we want to do is examine the existing partition layout. We do this by

({352

entering “p” to print the partition table for the device:

Command (m for help): p

Disk /dev/sdb: 16 MB, 16006656 bytes
1 heads, 31 sectors/track, 1008 cylinders
Units = cylinders of 31 * 512 = 15872 bytes

Device Boot Start End Blocks Id System
/dev/sdb1l 2 1008 15608+ b W95 FAT32

In this example, we see a 16 MB device with a single partition (1) that uses 1006 of the
available 1008 cylinders on the device. The partition is identified as Windows 95 FAT32
partition. Some programs will use this identifier to limit the kinds of operation that can
be done to the disk, but most of the time it is not critical to change it. However, in the

190

Creating New File Systems

interest of demonstration, we will change it to indicate a Linux partition. To do this, we
must first find out what ID is used to identify a Linux partition. In the listing above, we
see that the ID “b” is used to specify the exiting partition. To see a list of the available
partition types, we refer back to the program menu. There we can see the following
choice:

1 list known partition types

If we enter “1” at the prompt, a large list of possible types is displayed. Among them we
see “b” for our existing partition type and “83” for Linux.

Going back to the menu, we see this choice to change a partition ID:

t change a partition's system id

[{F%3)
t

We enter “t” at the prompt enter the new ID:

Command (m for help): t

Selected partition 1

Hex code (type L to list codes): 83

Changed system type of partition 1 to 83 (Linux)

This completes all the changes that we need to make. Up to this point, the device has
been untouched (all the changes have been stored in memory, not on the physical device),
so we will write the modified partition table to the device and exit. To do this, we enter
“w” at the prompt:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.

Syncing disks.

[me@linuxbox ~1$

If we had decided to leave the device unaltered, we could have entered “q” at the prompt,

191

16 — Storage Media

which would have exited the program without writing the changes. We can safely ignore
the ominous sounding warning message.

Creating A New File System With mkfs

With our partition editing done (lightweight though it might have been) it’s time to create
a new file system on our flash drive. To do this, we will use mkfs (short for “make file
system”), which can create file systems in a variety of formats. To create an ext3 file
system on the device, we use the “-t” option to specify the “ext3” system type, followed
by the name of device containing the partition we wish to format:

[me@linuxbox ~]$ sudo mkfs -t ext3 /dev/sdbil
mke2fs 1.40.2 (12-Jul-2007)
Filesystem label=
0S type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
3904 inodes, 15608 blocks
780 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=15990784
2 block groups
8192 blocks per group, 8192 fragments per group
1952 inodes per group
Superblock backups stored on blocks:
8193

Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[me@linuxbox ~]$%$

The program will display a lot of information when ext3 is the chosen file system type.
To re-format the device to its original FAT32 file system, specify “vfat” as the file system

type:

[me@linuxbox ~]$ sudo mkfs -t vfat /dev/sdbi

This process of partitioning and formatting can be used anytime additional storage
devices are added to the system. While we worked with a tiny flash drive, the same

192

Creating New File Systems

process can be applied to internal hard disks and other removable storage devices like
USB hard drives.

Testing And Repairing File Systems

In our earlier discussion of the /etc/fstab file, we saw some mysterious digits at the
end of each line. Each time the system boots, it routinely checks the integrity of the file
systems before mounting them. This is done by the fsck program (short for “file system
check”). The last number in each fstab entry specifies the order the devices are to be
checked. In our example above, we see that the root file system is checked first, followed
by the home and boot file systems. Devices with a zero as the last digit are not
routinely checked.

In addition to checking the integrity of file systems, fsck can also repair corrupt file
systems with varying degrees of success, depending on the amount of damage. On Unix-
like file systems, recovered portions of files are placed in the lost+found directory,
located in the root of each file system.

To check our flash drive (which should be unmounted first), we could do the following:

[me@linuxbox ~]$ sudo fsck /dev/sdbi

fsck 1.40.8 (13-Mar-2008)

e2fsck 1.40.8 (13-Mar-2008)

/dev/sdbl: clean, 11/3904 files, 1661/15608 blocks

In my experience, file system corruption is quite rare unless there is a hardware problem,
such as a failing disk drive. On most systems, file system corruption detected at boot
time will cause the system to stop and direct you to run fsck before continuing.

What The fsck?

In Unix culture, the word “fsck” is often used in place of a popular word with
which it shares three letters. This is especially appropriate, given that you will
probably be uttering the aforementioned word if you find yourself in a situation
where you are forced to run fsck.

Formatting Floppy Disks

For those of us still using computers old enough to be equipped with floppy diskette

193

16 — Storage Media

drives, we can manage those devices, too. Preparing a blank floppy for use is a two step
process. First, we perform a low-format on the diskette, then create a file system. To
accomplish the formatting, we use the fdformat program specifying the name of the
floppy device (usually /dev/fd0):

[me@linuxbox ~]$ sudo fdformat /dev/fdo

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done

Verifying ... done

Next, we apply a FAT file system to the diskette with mkfs:

[me@linuxbox ~]$ sudo mkfs -t msdos /dev/fdo

Notice that we use the “msdos” file system type to get the older (and smaller) style file
allocation tables. After a diskette is prepared, it may be mounted like other devices.

Moving Data Directly To/[From Devices

While we usually think of data on our computers as being organized into files, it is also
possible to think of the data in “raw” form. If we look at a disk drive, for example, we
see that it consists of a large number of “blocks” of data that the operating system sees as
directories and files. However, if we could treat a disk drive as simply a large collection
of data blocks, we could perform useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one place to another. It
uses a unique syntax (for historical reasons) and is usually used this way:

dd if=input file of=output file [bs=block size [count=blocks]]

Let’s say we had two USB flash drives of the same size and we wanted to exactly copy
the first drive to the second. If we attached both drives to the computer and they are
assigned to devices /dev/sdb and /dev/sdc respectively, we could copy everything
on the first drive to the second drive with the following:

dd if=/dev/sdb of=/dev/sdc

194

Moving Data Directly To/From Devices

Alternately, if only the first device were attached to the computer, we could copy its
contents to an ordinary file for later restoration or copying:

dd if=/dev/sdb of=flash_drive.img

Warning! The dd command is very powerful. Though its name derives from “data
definition,” it is sometimes called “destroy disk” because users often mistype either
the if or of specifications. Always double check your input and output
specifications before pressing enter!

Creating CD-ROM Images

Writing a recordable CD-ROM (either a CD-R or CD-RW) consists of two steps; first,
constructing an iso image file that is the exact file system image of the CD-ROM and
second, writing the image file onto the CD-ROM media.

Creating An Image Copy Of A CD-ROM

If we want to make an iso image of an existing CD-ROM, we can use dd to read all the
data blocks off the CD-ROM and copy them to a local file. Say we had an Ubuntu CD
and we wanted to make an iso file that we could later use to make more copies. After
inserting the CD and determining its device name (we’ll assume /dev/cdrom), we can
make the iso file like so:

dd if=/dev/cdrom of=ubuntu.iso

This technique works for data DVDs as well, but will not work for audio CDs, as they do
not use a file system for storage. For audio CDs, look at the cdrdao command.

Creating An Image From A Collection Of Files

To create an iso image file containing the contents of a directory, we use the
genisoimage program. To do this, we first create a directory containing all the files
we wish to include in the image and then execute the genisoimage command to create
the image file. For example, if we had created a directory called ~/cd-rom-files
and filled it with files for our CD-ROM, we could create an image file named cd-
rom. iso with the following command:

195

16 — Storage Media

genisoimage -o cd-rom.iso -R -J ~/cd-rom-files

The “-R” option adds metadata for the Rock Ridge extensions, which allows the use of
long filenames and POSIX style file permissions. Likewise, the “-J” option enables the
Joliet extensions, which permit long filenames for Windows.

A Program By Any Other Name...

If you look at on-line tutorials for creating and burning optical media like CD-
ROMs and DVDs, you will frequently encounter two programs called mkisofs
and cdrecord. These programs were part of a popular package called
“cdrtools” authored by Jorg Schilling. In the summer of 2006, Mr. Schilling
made a license change to a portion of the cdrtools package which, in the opinion
of many in the Linux community, created a license incompatibility with the GNU
GPL. As a result, a fork of the cdrtools project was started that now includes
replacement programs for cdrecord and mkisofs named wodim and
genisoimage, respectively.

Writing CD-ROM Images

After we have an image file, we can burn it onto our optical media. Most of the
commands we will discuss below can be applied to both recordable CD-ROM and DVD
media.

Mounting An ISO Image Directly

There is a trick that we can use to mount an iso image while it is still on our hard disk and
treat it as though it was already on optical media. By adding the “-o loop” option to
mount (along with the required “-t is09660” file system type), we can mount the image
file as though it were a device and attach it to the file system tree:

mkdir /mnt/iso_image
mount -t is09660 -o loop image.iso /mnt/iso_image

In the example above, we created a mount point named /mnt/iso_image and then
mounted the image file image.iso at that mount point. After the image is mounted, it
can be treated just as though it were a real CD-ROM or DVD. Remember to unmount the

196

Writing CD-ROM Images

image when it is no longer needed.

Blanking A Re-Writable CD-ROM

Rewritable CD-RW media needs to be erased or blanked before it can be reused. To do
this, we can use wodim, specifying the device name for the CD writer and the type of
blanking to be performed. The wodim program offers several types. The most minimal
(and fastest) is the “fast” type:

wodim dev=/dev/cdrw blank=fast

Writing An Image

To write an image, we again use wodim, specifying the name of the optical media writer
device and the name of the image file:

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a very large set of
options. Two common ones are “-v” for verbose output, and “-dao” which writes the disk
in disk-at-once mode. This mode should be used if you are preparing a disk for
commercial reproduction. The default mode for wodim is track-at-once, which is useful
for recording music tracks.

Further Reading

We have just touched on the many ways that the command line can be used to manage
storage media. Take a look at the man pages of the commands we have covered. Some
of them support huge numbers of options and operations. Also, look for on-line tutorials
for adding hard drives to your Linux system (there are many) and working with optical
media.

Extra Credit

It’s often useful to verify the integrity of an iso image that we have downloaded. In most
cases, a distributor of an iso image will also supply a checksum file. A checksum is the
result of an exotic mathematical calculation resulting in a number that represents the
content of the target file. If the contents of the file change by even one bit, the resulting
checksum will be much different. The most common method of checksum generation

197

16 — Storage Media

uses the md5sum program. When you use md5sum, it produces a unique hexadecimal
number:

md5sum image.iso
34e354760f9bb7fbf85c96f6a3f94ece image.iso

After you download an image, you should run md5sum against it and compare the results
with the md5sum value supplied by the publisher.

In addition to checking the integrity of a downloaded file, we can use md5sum to verify
newly written optical media. To do this, we first calculate the checksum of the image file
and then calculate a checksum for the media. The trick to verifying the media is to limit
the calculation to only the portion of the optical media that contains the image. We do
this by determining the number of 2048 byte blocks the image contains (optical media is
always written in 2048 byte blocks) and reading that many blocks from the media. On
some types of media, this is not required. A CD-R written in disk-at-once mode can be
checked this way:

md5sum /dev/cdrom
34e354760f9bb7fbf85c96f6a3f94ece /dev/cdrom

Many types of media, such as DVDs require a precise calculation of the number of
blocks. In the example below, we check the integrity of the image file dvd-
image.1iso and the disk in the DVD reader /dev/dvd. Can you figure out how this
works?

md5sum dvd-image.iso; dd if=/dev/dvd bs=2048 count=$(($(stat -c "%s"
dvd-image.iso) / 2048)) | md5sum

198

17 — Networking

17 - Networking

When it comes to networking, there is probably nothing that cannot be done with Linux.
Linux is used to build all sorts of networking systems and appliances, including firewalls,
routers, name servers, NAS (Network Attached Storage) boxes and on and on.

Just as the subject of networking is vast, so are the number of commands that can be used
to configure and control it. We will focus our attention on just a few of the most
frequently used ones. The commands chosen for examination include those used to
monitor networks and those used to transfer files. In addition, we are going to explore
the ssh program that is used to perform remote logins. This chapter will cover:

e ping - Send an ICMP ECHO_REQUEST to network hosts
e traceroute - Print the route packets trace to a network host

e netstat - Print network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships

e Ttp - Internet file transfer program
e wget - Non-interactive network downloader
e Ssh -OpenSSH SSH client (remote login program)

We’re going to assume a little background in networking. In this, the Internet age,
everyone using a computer needs a basic understanding of networking concepts. To
make full use of this chapter we should be familiar with the following terms:

e [P (Internet Protocol) address
e Host and domain name
e URI (Uniform Resource Identifier)

Please see the “Further Reading” section below for some useful articles regarding these
terms.

Note: Some of the commands we will cover may (depending on your distribution)
require the installation of additional packages from your distribution’s repositories,

199

17 — Networking

and some may require superuser privileges to execute.

Examining And Monitoring A Network

Even if you’re not the system administrator, it’s often helpful to examine the performance
and operation of a network.

ping
The most basic network command is ping. The ping command sends a special
network packet called an IMCP ECHO_REQUEST to a specified host. Most network

devices receiving this packet will reply to it, allowing the network connection to be
verified.

Note: It is possible to configure most network devices (including Linux hosts) to
ignore these packets. This is usually done for security reasons, to partially obscure
a host from a potential attacker. It is also common for firewalls to be configured to
block IMCP traffic.

For example, to see if we can reach 1inuxcommand.org (one of our favorite sites ;-),
we can use use ping like this:

[me@linuxbox ~]$ ping linuxcommand.org

Once started, ping continues to send packets at a specified interval (default is one
second) until it is interrupted:

[me@linuxbox ~]$ ping linuxcommand.org

PING linuxcommand.org (66.35.250.210) 56(84) bytes of data.

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=1
ttl=43 time=107 ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=2
ttl=43 time=108 ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=3
ttl=43 time=106 ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=4
tt1l=43 time=106 ms

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=5
ttl=43 time=105 ms

200

Examining And Monitoring A Network

64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=6
ttl=43 time=107 ms

--- linuxcommand.org ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 6010ms
rtt min/avg/max/mdev = 105.647/107.052/108.118/0.824 ms

After it is interrupted (in this case after the sixth packet) by pressing Ctrl-c, ping
prints performance statistics. A properly performing network will exhibit zero percent
packet loss. A successful “ping” will indicate that the elements of the network (its
interface cards, cabling, routing and gateways) are in generally good working order.

traceroute

The traceroute program (some systems use the similar tracepath program
instead) displays a listing of all the “hops” network traffic takes to get from the local
system to a specified host. For example, to see the route taken to reach
slashdot.org, we would do this:

[me@linuxbox ~]$ traceroute slashdot.org

The output looks like this:

traceroute to slashdot.org (216.34.181.45), 30 hops max, 40 byte
packets

1 ipcop.localdomain (192.168.1.1) 1.066 ms 1.366 ms 1.720 ms
2***

3 ge-4-13-ur0l.rockville.md.bad.comcast.net (68.87.130.9) 14.622
ms 14.885 ms 15.169 ms

4 po-30-ur@2.rockville.md.bad.comcast.net (68.87.129.154) 17.634
ms 17.626 ms 17.899 ms

5 po-60-ur03.rockville.md.bad.comcast.net (68.87.129.158) 15.992
ms 15.983 ms 16.256 ms

6 po-30-ar@l.howardcounty.md.bad.comcast.net (68.87.136.5) 22.835
ms 14.233 ms 14.405 ms

7 po-10-ar@2.whitemarsh.md.bad.comcast.net (68.87.129.34) 16.154
ms 13.600 ms 18.867 ms

8 te-0-3-0-1-cr@l.philadelphia.pa.ibone.comcast.net (68.86.90.77)
21.951 ms 21.073 ms 21.557 ms

9 pos-0-8-0-0-crOl.newyork.ny.ibone.comcast.net (68.86.85.10)
22.917 ms 21.884 ms 22.126 ms

10 204.70.144.1 (204.70.144.1) 43.110 ms 21.248 ms 21.264 ms

11 crl1-pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 21.857 ms

201

17 — Networking

Cr2-pos-0-0-3-1.newyork.savvis.net (204.70.204.238) 19.556 ms cri-
pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 19.634 ms

12 cr2-pos-0-7-3-0.chicago.savvis.net (204.70.192.109) 41.586 ms
42.843 ms cr2-tengig-0-0-2-0.chicago.savvis.net (204.70.196.242)
43.115 ms

13 hr2-tengigabitethernet-12-1.elkgrovech3.savvis.net
(204.70.195.122) 44.215 ms 41.833 ms 45.658 ms

14 csril-ve241.elkgrovech3.savvis.net (216.64.194.42) 46.840 ms
43.372 ms 47.041 ms

15 64.27.160.194 (64.27.160.194) 56.137 ms 55.887 ms 52.810 ms
16 slashdot.org (216.34.181.45) 42.727 ms 42.016 ms 41.437 ms

In the output, we can see that connecting from our test system to slashdot.org
requires traversing sixteen routers. For routers that provided identifying information, we
see their host names, IP addresses and performance data, which includes three samples of
round-trip time from the local system to the router. For routers that do not provide
identifying information (because of router configuration, network congestion, firewalls,
etc.), we see asterisks as in the line for hop number two.

netstat

The netstat program is used to examine various network settings and statistics.
Through the use of its many options, we can look at a variety of features in our network
setup. Using the “-ie” option, we can examine the network interfaces in our system:

[me@linuxbox ~]$ netstat -ie

etho Link encap:Ethernet Hwaddr 00:1d:09:9b:99:67
inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::21d:9ff:fe9b:9967/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:238488 errors:0 dropped:0 overruns:0 frame:0
TX packets:403217 errors:0 dropped:0@ overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:153098921 (146.0 MB) TX bytes:261035246 (248.9 MB)
Memory: fdfcO0000-fdfe@0O0

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:2208 errors:0 dropped:0 overruns:0 frame:0
TX packets:2208 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:111490 (108.8 KB) TX bytes:111490 (108.8 KB)

202

Examining And Monitoring A Network

In the example above, we see that our test system has two network interfaces. The first,
called etho, is the Ethernet interface and the second, called 1o, is the loopback

interface, a virtual interface that the system uses to “talk to itself.”

When performing causal network diagnostics, the important things to look for are the
presence of the word “UP” at the beginning of the fourth line for each interface,
indicating that the network interface is enabled, and the presence of a valid IP address in
the inet addr field on the second line. For systems using DHCP (Dynamic Host
Configuration Protocol), a valid IP address in this field will verify that the DHCP is
working.

Using the “-r” option will display the kernel’s network routing table. This shows how the
network is configured to send packets from network to network:

[me@linuxbox ~]$ netstat -r
Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 * 255.255.255.0 U 00 0 etho
default 192.168.1.1 0.0.0.0 UG 00 0 etho

In this simple example, we see a typical routing table for a client machine on a LAN
(Local Area Network) behind a firewall/router. The first line of the listing shows the
destination 192.168.1.0. IP addresses that end in zero refer to networks rather than
individual hosts, so this destination means any host on the LAN. The next field,
Gateway, is the name or IP address of the gateway (router) used to go from the current
host to the destination network. An asterisk in this field indicates that no gateway is
needed.

The last line contains the destination default. This means any traffic destined for a
network that is not otherwise listed in the table. In our example, we see that the gateway
is defined as a router with the address of 192.168.1.1, which presumably knows what
to do with the destination traffic.

The netstat program has many options and we have only looked at a couple. Check
out the netstat man page for a complete list.

Transporting Files Over A Network

What good is a network unless we know how to move files across it? There are many
programs that move data over networks. We will cover two of them now and several
more in later sections.

203

17 — Networking

ftp

One of the true “classic” programs, ftp gets it name from the protocol it uses, the File
Transfer Protocol. FTP is used widely on the Internet for file downloads. Most, if not
all, web browsers support it and you often see URIs starting with the protocol ftp://.

Before there were web browsers, there was the ftp program. ftp is used to
communicate with FTP servers, machines that contain files that can be uploaded and
downloaded over a network.

FTP (in its original form) is not secure, because it sends account names and passwords in
cleartext. This means that they are not encrypted and anyone sniffing the network can see
them. Because of this, almost all FTP done over the Internet is done by anonymous FTP
servers. An anonymous server allows anyone to login using the login name
“anonymous” and a meaningless password.

In the example below, we show a typical session with the ftp program downloading an
Ubuntu iso image located in the /pub/cd_images/Ubuntu-8. 04 directory of the
anonymous FTP server fileserver:

[me@linuxbox ~]1$ ftp fileserver

Connected to fileserver.localdomain.

220 (vsFTPd 2.0.1)

Name (fileserver:me): anonymous

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub/cd_images/Ubuntu-8.04

250 Directory successfully changed.

ftp> 1s

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

-rwW-rw-r-- 1 500 500 733079552 Apr 25 03:53 ubuntu-8.04-
desktop-1i386.1is0

226 Directory send OK.

ftp> lcd Desktop

Local directory now /home/me/Desktop

ftp> get ubuntu-8.04-desktop-i386.iso

local: ubuntu-8.04-desktop-i386.iso0 remote: ubuntu-8.04-desktop-
1386.1s0

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for ubuntu-8.04-desktop-
i386.1is0 (733079552 bytes).

226 File send OK.

733079552 bytes received in 68.56 secs (10441.5 kB/s)

204

Transporting Files Over A Network

ftp> bye

Here is an explanation of the commands entered during this session:

Command Meaning

ftp fileserver Invoke the ftp program and have it
connect to the FTP server
fileserver.

anonymous Login name. After the login prompt, a

password prompt will appear. Some
servers will accept a blank password,
others will require a password in the
form of a email address. In that case,
try something like
“user@example.com”.

cd pub/cd_images/Ubuntu-8.04 Change to the directory on the remote
system containing the desired file.
Note that on most anonymous FTP
servers, the files for public
downloading are found somewhere
under the pub directory.

1s List the directory on the remote
system.
lcd Desktop Change the directory on the local

system to ~/Desktop. In the
example, the ftp program was
invoked when the working directory
was ~. This command changes the
working directory to ~/Desktop.

get ubuntu-8.04-desktop- Tell the remote system to transfer the

1386.1iso0 file ubuntu-8.04-desktop-
1386.150 to the local system. Since
the working directory on the local
system was changed to ~/Desktop,
the file will be downloaded there.

bye Log off the remote server and end the
ftp program session. The commands

205

17 — Networking

quit and exit may also be used.

Typing “help” at the “ftp>” prompt will display a list of the supported commands. Using
ftp on a server where sufficient permissions have been granted, it is possible to perform
many ordinary file management tasks. It’s clumsy, but it does work.

1ftp —ABetter Ttp

ftp is not the only command line FTP client. In fact, there are many. One of better (and
more popular) ones is 1ftp by Alexander Lukyanov. It works much like the traditional
ftp program, but has many additional convenience features including multiple protocol
support (including HTTP), automatic re-try on failed downloads, background processes,
tab completion of path names, and many more.

wget

Another popular command line program for file downloading is wget. It is useful for
downloading content from both web and FTP sites. Single files, multiple files, and even
entire sites can be downloaded. To download the first page of 1inuxcommand.org
we could do this:

[me@linuxbox ~]1$ wget http://linuxcommand.org/index.php
--11:02:51-- http://linuxcommand.org/index.php

=> “index.php'
Resolving linuxcommand.org... 66.35.250.210
Connecting to linuxcommand.org|66.35.250.210|:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: unspecified [text/html]

[<=>] 3,120 - . --K/s

11:02:51 (161.75 MB/s) - “index.php' saved [3120]

The program's many options allow wget to recursively download, download files in the
background (allowing you to log off but continue downloading), and complete the
download of a partially downloaded file. These features are well documented in its
better-than-average man page.

Secure Communication With Remote Hosts

For many years, Unix-like operating systems have had the ability to be administered

206

Secure Communication With Remote Hosts

remotely via a network. In the early days, before the general adoption of the Internet,
there were a couple of popular programs used to log in to remote hosts. These were the
rlogin and telnet programs. These programs, however, suffer from the same fatal
flaw that the Ttp program does; they transmit all their communications (including login
names and passwords) in cleartext. This makes them wholly inappropriate for use in the
Internet age.

ssh

To address this problem, a new protocol called SSH (Secure Shell) was developed. SSH
solves the two basic problems of secure communication with a remote host. First, it
authenticates that the remote host is who it says it is (thus preventing so-called “man in
the middle” attacks), and second, it encrypts all of the communications between the local
and remote hosts.

SSH consists of two parts. An SSH server runs on the remote host, listening for incoming
connections on port twenty-two, while an SSH client is used on the local system to
communicate with the remote server.

Most Linux distributions ship an implementation of SSH called OpenSSH from the BSD
project. Some distributions include both the client and the server packages by default
(for example, Red Hat), while others (such as Ubuntu) only supply the client. To enable a
system to receive remote connections, it must have the OpenSSH-server package
installed, configured and running, and (if the system is either running or is behind a
firewall) it must allow incoming network connections on TCP port 22.

Tip: If you don’t have a remote system to connect to but want to try these
examples, make sure the OpenSSH-server package is installed on your system
and use 1localhost as the name of the remote host. That way, your machine will
create network connections with itself.

The SSH client program used to connect to remote SSH servers is called, appropriately
enough, Ssh. To connect to a remote host named remote -sys, we would use the ssh
client program like so:

[me@linuxbox ~]$ ssh remote-sys

The authenticity of host 'remote-sys (192.168.1.4)' can't be
established.

RSA key fingerprint is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.

Are you sure you want to continue connecting (yes/no)?

207

17 — Networking

The first time the connection is attempted, a message is displayed indicating that the
authenticity of the remote host cannot be established. This is because the client program
has never seen this remote host before. To accept the credentials of the remote host, enter
“yes” when prompted. Once the connection is established, the user is prompted for
his/her password:

Warning: Permanently added 'remote-sys,192.168.1.4' (RSA) to the list
of known hosts.
me@remote-sys's password:

After the password is successfully entered, we receive the shell prompt from the remote
system:

Last login: Sat Aug 30 13:00:48 2008
[me@remote-sys ~]$

The remote shell session continues until the user enters the exit command at the remote
shell prompt, thereby closing the remote connection. At this point, the local shell session
resumes and the local shell prompt reappears.

It is also possible to connect to remote systems using a different user name. For example,
if the local user “me” had an account named “bob” on a remote system, user me could log
in to the account bob on the remote system as follows:

[me@linuxbox ~]$ ssh bob@remote-sys
bob@remote-sys's password:

Last login: Sat Aug 30 13:03:21 2008
[bob@remote-sys ~]$

As stated before, ssh verifies the authenticity of the remote host. If the remote host does
not successfully authenticate, the following message appears:

[me@linuxbox ~]$ ssh remote-sys
0000eEEEEEEEEEEECECECCEEEACAECCCAEAEAEACEAEAEAEEEAEEAEAECEAAEA

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
0000eEeEEEEEEEEEEEEECEEACACEACACACEEACEECCCAEACCACEEAEAECAEA

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle
attack)!

208

Secure Communication With Remote Hosts

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.

Please contact your system administrator.

Add correct host key in /home/me/.ssh/known_hosts to get rid of this
message.

offending key in /home/me/.ssh/known_hosts:1

RSA host key for remote-sys has changed and you have requested strict
checking.

Host key verification failed.

This message is caused by one of two possible situations. First, an attacker may be
attempting a “man-in-the-middle” attack. This is rare, since everybody knows that ssh
alerts the user to this. The more likely culprit is that the remote system has been changed
somehow; for example, its operating system or SSH server has been reinstalled. In the
interests of security and safety however, the first possibility should not be dismissed out
of hand. Always check with the administrator of the remote system when this message
occurs.

After it has been determined that the message is due to a benign cause, it is safe to correct
the problem on the client side. This is done by using a text editor (vim perhaps) to
remove the obsolete key from the ~/.ssh/known_hosts file. In the example
message above, we see this:

Offending key in /home/me/.ssh/known_hosts:1

This means that line one of the known_hosts file contains the offending key. Delete
this line from the file, and the ssh program will be able to accept new authentication
credentials from the remote system.

Besides opening a shell session on a remote system, Ssh also allows us to execute a
single command on a remote system. For example, to execute the free command on a
remote host named remote-sys and have the results displayed on the local system:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:
total used free shared buffers cached

Mem: 775536 507184 268352 (0] 110068 154596

-/+ buffers/cache: 242520 533016
Swap: 1572856 (0] 1572856

209

17 — Networking

[me@linuxbox ~1$

It’s possible to use this technique in more interesting ways, such as this example in which
we perform an Is on the remote system and redirect the output to a file on the local
system:

[me@linuxbox ~]$ ssh remote-sys 'ls *' > dirlist.txt
me@twin4's password:
[me@linuxbox ~1$

Notice the use of the single quotes in the command above. This is done because we do
not want the pathname expansion performed on the local machine; rather, we want it to
be performed on the remote system. Likewise, if we had wanted the output redirected to
a file on the remote machine, we could have placed the redirection operator and the
filename within the single quotes:

[me@linuxbox ~]$ ssh remote-sys 'ls * > dirlist.txt'

Tunneling With SSH

Part of what happens when you establish a connection with a remote host via SSH
is that an encrypted tunnel is created between the local and remote systems.
Normally, this tunnel is used to allow commands typed at the local system to be
transmitted safely to the remote system, and for the results to be transmitted
safely back. In addition to this basic function, the SSH protocol allows most
types of network traffic to be sent through the encrypted tunnel, creating a sort of
VPN (Virtual Private Network) between the local and remote systems.

Perhaps the most common use of this feature is to allow X Window system traffic
to be transmitted. On a system running an X server (that is, a machine displaying
a GUI), it is possible to launch and run an X client program (a graphical
application) on a remote system and have its display appear on the local system.
It’s easy to do, here’s an example: let’s say we are sitting at a Linux system
called 1inuxbox which is running an X server, and we want to run the xload
program on a remote system named remote-sys and see the program’s
graphical output on our local system. We could do this:

210

Secure Communication With Remote Hosts

[me@linuxbox ~]$ ssh -X remote-sys
me@remote-sys's password:

Last login: Mon Sep 08 13:23:11 2008
[me@remote-sys ~]$ xload

After the x1oad command is executed on the remote system, its window appears
on the local system. On some systems, you may need to use the “-Y” option
rather than the “-X” option to do this.

scp And sftp

The OpenSSH package also includes two programs that can make use of an SSH
encrypted tunnel to copy files across the network. The first, SCp (secure copy) is used
much like the familiar cp program to copy files. The most notable difference is that the
source or destination pathnames may be preceded with the name of a remote host,
followed by a colon character. For example, if we wanted to copy a document named
document . txt from our home directory on the remote system, remote-sys, to the
current working directory on our local system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .

me@remote-sys's password:

document. txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~1$

As with ssh, you may apply a user name to the beginning of the remote host’s name if
the desired remote host account name does not match that of the local system:

[me@linuxbox ~]$ scp bob@remote-sys:document.txt .

The second SSH file copying program is sftp which, as its name implies, is a secure
replacement for the ftp program. sftp works much like the original ftp program that
we used earlier; however, instead of transmitting everything in cleartext, it uses an SSH
encrypted tunnel. sftp has an important advantage over conventional ftp in that it
does not require an FTP server to be running on the remote host. It only requires the SSH
server. This means that any remote machine that can connect with the SSH client can
also be used as a FTP-like server. Here is a sample session:

211

17 — Networking

[me@linuxbox ~]$ sftp remote-sys

Connecting to remote-sys...

me@remote-sys's password:

sftp> 1s

ubuntu-8.04-desktop-i386.1iso

sftp> lcd Desktop

sftp> get ubuntu-8.04-desktop-i386.iso

Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-
desktop-1386.1is0

/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

Tip: The SFTP protocol is supported by many of the graphical file managers found
in Linux distributions. Using either Nautilus (GNOME) or Konqueror (KDE), we
can enter a URI beginning with sftp:// into the location bar and operate on files
stored on a remote system running an SSH server.

An SSH Client For Windows?

Let’s say you are sitting at a Windows machine but you need to log in to your
Linux server and get some real work done, what do you do? Get an SSH client
program for your Windows box, of course! There are a number of these. The
most popular one is probably PuTTY by Simon Tatham and his team. The
PuTTY program displays a terminal window and allow a Windows user to open
an SSH (or telnet) session on a remote host. The program also provides analogs
for the scp and sftp programs.

PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/

Further Reading

e For a broad (albeit dated) look at network administration, the Linux
Documentation Project provides the Linux Network Administrator’s Guide:

http://tldp.org/L.LDP/nag2/index.html

e Wikipedia contains many good networking articles. Here are some of the basics:
http://en.wikipedia.org/wiki/Internet protocol address
http://en.wikipedia.org/wiki/Host name
http://en.wikipedia.org/wiki/Uniform Resource Identifier

212

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Host_name
http://en.wikipedia.org/wiki/Internet_protocol_address
http://tldp.org/LDP/nag2/index.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

18 — Searching For Files

18 - Searching For Files

As we have wandered around our Linux system, one thing has become abundantly clear:
a typical Linux system has a lot of files! This begs the question, “how do we find
things?” We already know that the Linux file system is well organized according to
conventions that have been passed down from one generation of Unix-like system to the
next, but the sheer number of files can present a daunting problem.

In this chapter, we will look at two tools that are used to find files on a system. These
tools are:

e locate - Find files by name
e fTind - Search for files in a directory hierarchy

We will also look at a command that is often used with file search commands to process
the resulting list of files:

e Xargs — Build and execute command lines from standard input
In addition, we will introduce a couple of commands to assist us in or exploration:
e touch — Change file times

e stat — Display file or file system status

locate - Find Files The Easy Way

The 1locate program performs a rapid database search of pathnames and outputs every
name that matches a given substring. Say, for example, we want to find all the programs
with names that begin with “zip.” Since we are looking for programs, we can assume
that the directory containing the programs would end with “bin/”. Therefore, we could
try to use locate this way to find our files:

[me@linuxbox ~]$ locate bin/zip

locate will search its database of pathnames and output any that contain the string

213

18 — Searching For Files

“bin/zip”:

/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

If the search requirement is not so simple, locate can be combined with other tools
such as grep to design more interesting searches:

[me@linuxbox ~]$ locate zip | grep bin
/bin/bunzip2
/bin/bzip2
/bin/bzip2recover
/bin/gunzip
/bin/gzip
/usr/bin/funzip
/usr/bin/gpg-zip
/usr/bin/preunzip
/usr/bin/prezip
/usr/bin/prezip-bin
/usr/bin/unzip
/usr/bin/unzipsfx
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

The locate program has been around for a number of years, and there are several
different variants in common use. The two most common ones found in modern Linux
distributions are slocate and mlocate, though they are usually accessed by a
symbolic link named locate. The different versions of locate have overlapping
options sets. Some versions include regular expression matching (which we’ll cover in
an upcoming chapter) and wild card support. Check the man page for locate to
determine which version of 1ocate is installed.

214

locate — Find Files The Easy Way

Where Does The locate Database Come From?

You may notice that, on some distributions, locate fails to work just after the
system is installed, but if you try again the next day, it works fine. What gives?
The locate database is created by another program named updatedb.
Usually, it is run periodically as a cron job; that is, a task performed at regular
intervals by the cron daemon. Most systems equipped with locate run
updatedb once a day. Since the database is not updated continuously, you will
notice that very recent files do not show up when using locate. To overcome
this, it’s possible to run the updatedb program manually by becoming the
superuser and running updatedb at the prompt.

find - Find Files The Hard Way

While the 1ocate program can find a file based solely on its name, the find program
searches a given directory (and its subdirectories) for files based on a variety of
attributes. We’re going to spend a lot of time with find because it has a lot of
interesting features that we will see again and again when we start to cover programming
concepts in later chapters.

In its simplest use, find is given one or more names of directories to search. For
example, to produce a list of our home directory:

[me@linuxbox ~]$ find ~

On most active user accounts, this will produce a large list. Since the list is sent to
standard output, we can pipe the list into other programs. Let’s use wWC to count the
number of files:

47068

[me@linuxbox ~]$ find ~ | wc -1

Wow, we’ve been busy! The beauty of find is that it can be used to identify files that
meet specific criteria. It does this through the (slightly strange) application of options,
tests, and actions. We’ll look at the tests first.

215

18 — Searching For Files

Tests

Let’s say that we want a list of directories from our search. To do this, we could add the
following test:

[me@linuxbox ~]$ find ~ -type d | wc -1
1695

Adding the test -type d limited the search to directories. Conversely, we could have
limited the search to regular files with this test:

[me@linuxbox ~]$ find ~ -type f | wc -1
38737

Here are the common file type tests supported by find:

Table 18-1: find File Types

File Type Description

b Block special device file

c Character special device file
d Directory

f Regular file

1 Symbolic link

We can also search by file size and filename by adding some additional tests: Let’s look
for all the regular files that match the wild card pattern “*.JPG” and are larger than one
megabyte:

[me@linuxbox ~]$ find ~ -type f -name "*.JPG" -size +1M | wc -1
840

In this example, we add the -name test followed by the wild card pattern. Notice how
we enclose it in quotes to prevent pathname expansion by the shell. Next, we add the
-size test followed by the string “+1M”. The leading plus sign indicates that we are
looking for files larger than the specified number. A leading minus sign would change

216

find — Find Files The Hard Way

the meaning of the string to be smaller than the specified number. No sign means,
“match the value exactly.” The trailing letter “M” indicates that the unit of measurement
is megabytes. The following characters may be used to specify units:

Table 18-2: find Size Units
Character Unit
512 byte blocks. This is the default if no unit is specified.
Bytes
Two byte words
Kilobytes (Units of 1024 bytes)
Megabytes (Units of 1048576 bytes)
Gigabytes (Units of 1073741824 bytes)

O X2 X = O T

find supports a large number of different tests. Below is a rundown of the common
ones. Note that in cases where a numeric argument is required, the same “+” and “-”
notation discussed above can be applied:

Table 18-3: find Tests

Test Description

-cmin n Match files or directories whose content or attributes were
last modified exactly n minutes ago. To specify less than n
minutes ago, use -n and to specify more than n minutes
ago, use +n.

-chewer file Match files or directories whose contents or attributes were
last modified more recently than those of file.

-ctime n Match files or directories whose contents or attributes were
last modified n*24 hours ago.

-empty Match empty files and directories.

-group name Match file or directories belonging to group. group may
be expressed as either a group name or as a numeric group
ID.

-iname pattern Like the -name test but case insensitive.

-inum n Match files with inode number n. This is helpful for

finding all the hard links to a particular inode.

217

18 — Searching For Files

-mmin n Match files or directories whose contents were modified n
minutes ago.

-mtime n Match files or directories whose contents were modified
n*24 hours ago.

-name pattern Match files and directories with the specified wild card
pattern.
-newer file Match files and directories whose contents were modified

more recently than the specified file. This is very useful
when writing shell scripts that perform file backups. Each
time you make a backup, update a file (such as a log), then
use find to determine which files that have changed since
the last update.

-nhouser Match file and directories that do not belong to a valid user.
This can be used to find files belonging to deleted accounts
or to detect activity by attackers.

-nogroup Match files and directories that do not belong to a valid
group.
-perm mode Match files or directories that have permissions set to the

specified mode. mode may be expressed by either octal or
symbolic notation.

-samefile name Similar to the - inum test. Matches files that share the
same inode number as file name.

-size n Match files of size n.

-type ¢ Match files of type c.

-user name Match files or directories belonging to user name. The
user may be expressed by a user name or by a numeric user
ID.

This is not a complete list. The find man page has all the details.

Operators

Even with all the tests that find provides, we may still need a better way to describe the
logical relationships between the tests. For example, what if we needed to determine if
all the files and subdirectories in a directory had secure permissions? We would look for
all the files with permissions that are not 0600 and the directories with permissions that

218

find — Find Files The Hard Way

are not 0700. Fortunately, find provides a way to combine tests using logical operators
to create more complex logical relationships. To express the aforementioned test, we

could do this:

[me@linuxbox ~]$ find ~ \(-type f -not -perm 0600 \) -or \(-type d

-hot -perm 0700 \)

Yikes! That sure looks weird. What is all this stuff? Actually, the operators are not that
complicated once you get to know them. Here is the list:

Table 18-4: find Logical Operators

Operator
-and

-or

-not

(

)

Description

Match if the tests on both sides of the operator are true.
May be shortened to -a. Note that when no operator is
present, -and is implied by default.

Match if a test on either side of the operator is true. May be
shortened to -o0.

Match if the test following the operator is false. May be
abbreviated with an exclamation point (!).

Groups tests and operators together to form larger
expressions. This is used to control the precedence of the
logical evaluations. By default, find evaluates from left
to right. It is often necessary to override the default
evaluation order to obtain the desired result. Even if not
needed, it is helpful sometimes to include the grouping
characters to improve readability of the command. Note
that since the parentheses characters have special meaning
to the shell, they must be quoted when using them on the
command line to allow them to be passed as arguments to
find. Usually the backslash character is used to escape
them.

With this list of operators in hand, let’s deconstruct our find command. When viewed
from the uppermost level, we see that our tests are arranged as two groupings separated

by an -Or operator:

(expression 1) -or (expression 2)

219

18 — Searching For Files

This makes sense, since we are searching for files with a certain set of permissions and
for directories with a different set. If we are looking for both files and directories, why
do we use -oOr instead of -and? Because as find scans through the files and
directories, each one is evaluated to see if it matches the specified tests. We want to
know if it is either a file with bad permissions or a directory with bad permissions. It
can’t be both at the same time. So if we expand the grouped expressions, we can see it
this way:

(file with bad perms) -or (directory with bad perms)

Our next challenge is how to test for “bad permissions.” How do we do that? Actually
we don’t. What we will test for is “not good permissions,” since we know what “good
permissions” are. In the case of files, we define good as 0600 and for directories, as
0711. The expression that will test files for “not good” permissions is:

-type f -and -not -perms 0600

and for directories:

-type d -and -not -perms 0700

As noted in the table of operators above, the -and operator can be safely removed, since
it is implied by default. So if we put this all back together, we get our final command:
find ~ (-type f -not -perms 0600) -or (-type d -not
-perms 0700)

However, since the parentheses have special meaning to the shell, we must escape them
to prevent the shell from trying to interpret them. Preceding each one with a backslash
character does the trick.

There is another feature of logical operators that is important to understand. Let’s say
that we have two expressions separated by a logical operator:

exprl -operator exprZ2

In all cases, expr1 will always be performed; however the operator will determine if
expr2 is performed. Here’s how it works:

Table 18-5: find AND/OR Logic

Results of expri Operator expr2is...

True -and Always performed
False -and Never performed
True -or Never performed
False -or Always performed

220

find — Find Files The Hard Way

Why does this happen? It’s done to improve performance. Take -and, for example. We
know that the expression exprl -and expr2 cannot be true if the result of expri
is false, so there is no point in performing expr2. Likewise, if we have the expression
exprl -or expr2 and the result of expr1l is true, there is no point in performing
expr2, as we already know that the expression exprl -or expr2 is true.

OK, so it helps it go faster. Why is this important? It’s important because we can rely on
this behavior to control how actions are performed, as we shall soon see..

Predefined Actions

Let’s get some work done! Having a list of results from our find command is useful,
but what we really want to do is act on the items on the list. Fortunately, find allows
actions to be performed based on the search results. There are a set of predefined actions
and several ways to apply user-defined actions. First let’s look at a few of the predefined
actions:

Table 18-6: Predefined find Actions

Action Description

-delete Delete the currently matching file.

-1s Perform the equivalent of 1s -dils on the matching file.
Output is sent to standard output.

-print Output the full pathname of the matching file to standard
output. This is the default action if no other action is
specified.

-quit Quit once a match has been made.

As with the tests, there are many more actions. See the find man page for full details.

In our very first example, we did this:

find ~

which produced a list of every file and subdirectory contained within our home directory.
It produced a list because the -print action is implied if no other action is specified.
Thus our command could also be expressed as:

221

18 — Searching For Files

find ~ -print

We can use Tind to delete files that meet certain criteria. For example, to delete files
that have the file extension “.BAK” (which is often used to designate backup files), we
could use this command:

find ~ -type f -name '*.BAK' -delete

In this example, every file in the user’s home directory (and its subdirectories) is searched
for filenames ending in . BAK. When they are found, they are deleted.

Warning: It should go without saying that you should use extreme caution when
using the -delete action. Always test the command first by substituting the
-print action for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators affect actions.
Consider the following command:

find ~ -type f -name '*.BAK' -print

As we have seen, this command will look for every regular file (- type f) whose name
ends with .BAK (-name '*.BAK') and will output the relative pathname of each
matching file to standard output (-print). However, the reason the command performs
the way it does is determined by the logical relationships between each of the tests and
actions. Remember, there is, by default, an implied -and relationship between each test
and action. We could also express the command this way to make the logical
relationships easier to see:

find ~ -type f -and -name '*.BAK' -and -print

With our command fully expressed, let’s look at how the logical operators affect its
execution:

Test/Action Is Performed Only If...
-print -type fand -name '*.BAK' are true

222

find — Find Files The Hard Way

-name ‘*.BAK’ -type fistrue

-type f Is always performed, since it is the first test/action in an
-and relationship.

Since the logical relationship between the tests and actions determines which of them are
performed, we can see that the order of the tests and actions is important. For instance, if
we were to reorder the tests and actions so that the -print action was the first one, the
command would behave much differently:

find ~ -print -and -type f -and -name '*.BAK'

This version of the command will print each file (the -print action always evaluates to
true) and then test for file type and the specified file extension.

User Defined Actions

In addition to the predefined actions, we can also invoke arbitrary commands. The
traditional way of doing this is with the -exec action. This action works like this:

-exec command {} ;

where command is the name of a command, {} is a symbolic representation of the current
pathname and the semicolon is a required delimiter indicating the end of the command.
Here’s an example of using -exec to act like the -delete action discussed earlier:

-exec rm '{}' ';'

Again, since the brace and semicolon characters have special meaning to the shell, they
must be quoted or escaped.

It’s also possible to execute a user defined action interactively. By using the -0k action
in place of -exec, the user is prompted before execution of each specified command:

find ~ -type f -name 'foo*' -ok 1s -1 '{}' ';'

< 1ls ... /home/me/bin/foo > ? y
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
< 1ls ... /home/me/foo.txt > ? y

-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

223

18 — Searching For Files

In this example, we search for files with names starting with the string “foo” and execute
the command 1S -1 each time one is found. Using the -0k action prompts the user
before the 1S command is executed.

Improving Efficiency

When the -exec action is used, it launches a new instance of the specified command
each time a matching file is found. There are times when we might prefer to combine all
of the search results and launch a single instance of the command. For example, rather
than executing the commands like this:

1s -1 file1
1ls -1 file2

we may prefer to execute it this way:
1s -1 filel file2

thus causing the command to be executed only one time rather than multiple times.
There are two ways we can do this. The traditional way, using the external command
xargs and the alternate way, using a new feature in find itself. We’ll talk about the
alternate way first.

By changing the trailing semicolon character to a plus sign, we activate the ability of
find to combine the results of the search into an argument list for a single execution of
the desired command. Going back to our example, this:

find ~ -type f -name 'foo*' -exec 1ls -1 '{}' ';'
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

will execute 1s each time a matching file is found. By changing the command to:

find ~ -type f -name 'foo*' -exec 1ls -1 '{}' +
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

we get the same results, but the system only has to execute the 1S command once.

Xxargs

The xargs command performs an interesting function. It accepts input from standard

224

find — Find Files The Hard Way

input and converts it into an argument list for a specified command. With our example,
we would use it like this:

find ~ -type f -name 'foo*' -print | xargs 1ls -1
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into Xargs which, in turn,
constructs an argument list for 1s command and then executes it.

Note: While the number of arguments that can be placed into a command line is
quite large, it’s not unlimited. It is possible to create commands that are too long
for the shell to accept. When a command line exceeds the maximum length
supported by the system, xargs executes the specified command with the
maximum number of arguments possible and then repeats this process until
standard input is exhausted. To see the maximum size of the command line,
execute Xargs with the - -show-1imits option.

Dealing With Funny Filenames

Unix-like systems allow embedded spaces (and even newlines!) in filenames.
This causes problems for programs like xargs that construct argument lists for
other programs. An embedded space will be treated as a delimiter and the
resulting command will interpret each space-separated word as a separate
argument. To overcome this, find and xarg allow the optional use of a null
character as argument separator. A null character is defined in ASCII as the
character represented by the number zero (as opposed to, for example, the space
character, which is defined in ASCII as the character represented by the number
32). The find command provides the action -print0, which produces null
separated output, and the Xargs command has the --null option, which
accepts null separated input. Here’s an example:

find ~ -iname '*.jpg' -print® | xargs --null 1s -1

Using this technique, we can ensure that all files, even those containing embedded
spaces in their names, are handled correctly.

225

18 — Searching For Files

A Return To The Playground

It’s time to put Tind to some (almost) practical use. We’ll create a playground and try
out some of what we have learned.

First, let’s create a playground with lots of subdirectories and files:

[me@linuxbox ~]$ mkdir -p playground/dir-{e0{1..9},0{106..99}, 100}
[me@linuxbox ~]$ touch playground/dir-{060{1..9},0{10..99},100}/file-

{A..2}

Marvel in the power of the command line! With these two lines, we created a playground
directory containing one hundred subdirectories each containing twenty-six empty files.
Try that with the GUI!

The method we employed to accomplish this magic involved a familiar command
(mkdir), an exotic shell expansion (braces) and a new command, touch. By
combining mkdir with the -p option (which causes mkdir to create the parent
directories of the specified paths) with brace expansion, we were able to create one
hundred directories.

The touch command is usually used to set or update the access, change, and modify
times of files. However, if a filename argument is that of a nonexistent file, an empty file
is created.

In our playground, we created one hundred instances of a file named file-A. Let’s find
them:

[me@linuxbox ~]$ find playground -type f -name 'file-A'

Note that unlike 1s, find does not produce results in sorted order. Its order is
determined by the layout of the storage device. To confirm that we actually have one
hundred instances of the file we can confirm it this way:

100

[me@linuxbox ~]$ find playground -type f -name 'file-A' | wc -1

Next, let’s look at finding files based on their modification times. This will be helpful
when creating backups or organizing files in chronological order. To do this, we will first
create a reference file against which we will compare modification time:

226

find — Find Files The Hard Way

[me@linuxbox ~]$ touch playground/timestamp

This creates an empty file named timestamp and sets its modification time to the
current time. We can verify this by using another handy command, stat, which is a
kind of souped-up version of 1s. The stat command reveals all that the system
understands about a file and its attributes:

[me@linuxbox ~]$ stat playground/timestamp

File: “playground/timestamp'

Size: 0 Blocks: O I0 Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2008-10-08 15:15:39.000000000 -0400
Modify: 2008-10-08 15:15:39.000000000 -0400
Change: 2008-10-08 15:15:39.000000000 -0400

If we touch the file again and then examine it with stat, we will see that the file’s
times have been updated.:

[me@linuxbox ~]$ touch playground/timestamp
[me@linuxbox ~]$ stat playground/timestamp
File: “playground/timestamp’
Size: 0 Blocks: O I0 Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2008-10-08 15:23:33.000000000 -0400
Modify: 2008-10-08 15:23:33.000000000 -0400
Change: 2008-10-08 15:23:33.000000000 -0400

Next, let’s use find to update some of our playground files:

[me@linuxbox ~]$ find playground -type f -name 'file-B' -exec touch

I{}I I;I

This updates all files in the playground named file-B. Next we’ll use find to identify
the updated files by comparing all the files to the reference file timestamp:

[me@linuxbox ~]$ find playground -type f -newer playground/timestamp

227

18 — Searching For Files

The results contain all one hundred instances of file-B. Since we performed a touch
on all the files in the playground named file-B after we updated timestamp, they
are now “newer” than timestamp and thus can be identified with the - newer test.

Finally, let’s go back to the bad permissions test we performed earlier and apply it to
playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 \) -or \(
-type d -not -perm 0700 \)

This command lists all one hundred directories and twenty-six hundred files in
playground (as well as timestamp and playground itself, for a total of 2702)
because none of them meets our definition of “good permissions.” With our knowledge
of operators and actions, we can add actions to this command to apply new permissions
to the files and directories in our playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec
chmod 0600 '{}' ';' \) -or \(-type d -not -perm 0711 -exec chmod
0700 '{}' ';' \)

On a day-to-day basis, we might find it easier to issue two commands, one for the
directories and one for the files, rather than this one large compound command, but it’s
nice to know that we can do it this way. The important point here is to understand how
the operators and actions can be used together to perform useful tasks.

Options

Finally, we have the options. The options are used to control the scope of a find search.
They may be included with other tests and actions when constructing find expressions.
Here is a list of the most commonly used ones:

Table 18-7: find Options

Option Description

-depth Direct find to process a directory’s files before the
directory itself. This option is automatically applied
when the -delete action is specified.

-maxdepth levels Setthe maximum number of levels that find will
descend into a directory tree when performing tests and

228

find — Find Files The Hard Way

actions.

-mindepth levels Setthe minimum number of levels that find will
descend into a directory tree before applying tests and
actions.

-mount Direct find not to traverse directories that are mounted
on other file systems.

-noleaf Direct find not to optimize its search based on the
assumption that it is searching a Unix-like file system.
This is needed when scanning DOS/Windows file
systems and CD-ROMs.

Further Reading

e The locate, updatedb, find, and xargs programs are all part the GNU
Project’s findutils package. The GNU Project provides a website with extensive
on-line documentation, which is quite good and should be read if you are using
these programs in high security environments:
http://www.gnu.org/software/findutils/

229

http://www.gnu.org/software/findutils/

19 — Archiving And Backup

19 - Archiving And Backup

One of the primary tasks of a computer system’s administrator is keeping the system’s
data secure. One way this is done is by performing timely backups of the system’s files.
Even if you’re not system administrators, it is often useful to make copies of things and
to move large collections of files from place to place and from device to device.

In this chapter, we will look at several common programs that are used to manage
collections of files. There are the file compression programs:

e (Qzip — Compress or expand files

e bzip2 - Ablock sorting file compressor
The archiving programs:

e tar —Tape archiving utility

e zip — Package and compress files
And the file synchronization program:

e rsync — Remote file and directory synchronization

Compressing Files

Throughout the history of computing, there has been a struggle to get the most data into
the smallest available space, whether that space be memory, storage devices or network
bandwidth. Many of the data services that we take for granted today, such as portable
music players, high definition television, or broadband Internet, owe their existence to
effective data compression techniques.

Data compression is the process of removing redundancy from data. Let’s consider an
imaginary example. Say we had an entirely black picture file with the dimensions of one
hundred pixels by one hundred pixels. In terms of data storage (assuming twenty-four
bits, or three bytes per pixel), the image will occupy thirty thousand bytes of storage:

100 * 100 * 3 = 30,000

An image that is all one color contains entirely redundant data. If we were clever, we
could encode the data in such a way that we simply describe the fact that we have a block

230

Compressing Files

of thirty thousand black pixels. So, instead of storing a block of data containing thirty
thousand zeros (black is usually represented in image files as zero), we could compress
the data into the number 30,000, followed by a zero to represent our data. Such a data
compression scheme is called run-length encoding and is one of the most rudimentary
compression techniques. Today’s techniques are much more advanced and complex but
the basic goal remains the same—get rid of redundant data.

Compression algorithms (the mathematical techniques used to carry out the compression)
fall into two general categories, lossless and lossy. Lossless compression preserves all
the data contained in the original. This means that when a file is restored from a
compressed version, the restored file is exactly the same as the original, uncompressed
version. Lossy compression, on the other hand, removes data as the compression is
performed, to allow more compression to be applied. When a lossy file is restored, it
does not match the original version; rather, it is a close approximation. Examples of
lossy compression are JPEG (for images) and MP3 (for music.) In our discussion, we
will look exclusively at lossless compression, since most data on computers cannot
tolerate any data loss.

9zip
The gzip program is used to compress one or more files. When executed, it replaces the
original file with a compressed version of the original. The corresponding gunzip

program is used to restore compressed files to their original, uncompressed form. Here is
an example:

[me@linuxbox ~]$ 1s -1 /etc > foo.txt

[me@linuxbox ~]$ 1s -1 foo.*

-rw-r--r-- 1 me me 15738 2008-10-14 07:15 foo.txt
[me@linuxbox ~]$ gzip foo.txt

[me@linuxbox ~]$ 1s -1 foo.*

-rw-r--r-- 1 me me 3230 2008-10-14 07:15 foo.txt.gz
[me@linuxbox ~]$ gunzip foo.txt

[me@linuxbox ~]$ 1s -1 foo.*

-rw-r--r-- 1 me me 15738 2008-10-14 07:15 foo.txt

In this example, we create a text file named f00 . tXt from a directory listing. Next, we
run gzip, which replaces the original file with a compressed version named
foo.txt.gz. In the directory listing of foo.*, we see that the original file has been
replaced with the compressed version, and that the compressed version about one-fifth
the size of the original. We can also see that the compressed file has the same
permissions and time stamp as the original.

Next, we run the gunzip program to uncompress the file. Afterward, we can see that

231

19 — Archiving And Backup

the compressed version of the file has been replaced with the original, again with the
permissions and time stamp preserved.

gzip has many options. Here are a few:

Table 19-1: gzip Options

Option Description

-C Write output to standard output and keep original files. May also be
specified with - -stdout and - -to-stdout.

-d Decompress. This causes gzip to act like gunzip. May also be
specified with - -decompress or - -uncompress.

- Force compression even if compressed version of the original file
already exists. May also be specified with - -force.

-h Display usage information. May also be specified with - -help.

-1 List compression statistics for each file compressed. May also be

specified with - -1ist.

-r If one or more arguments on the command line are directories,
recursively compress files contained within them. May also be
specified with - -recursive.

-t Test the integrity of a compressed file. May also be specified with
--test.
-V Display verbose messages while compressing. May also be specified

with --verbose.

-number Set amount of compression. number is an integer in the range of 1
(fastest, least compression) to 9 (slowest, most compression). The
values 1 and 9 may also be expressed as - -fast and - -best,
respectively. The default value is 6.

Going back to our earlier example:

[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]%$ gzip -tv foo.txt.gz
foo.txt.gz: OK

[me@linuxbox ~]$ gzip -d foo.txt.gz

Here, we replaced the file foo. txt with a compressed version, named foo.txt.gz.

232

Compressing Files

Next, we tested the integrity of the compressed version, using the -t and -V options.
Finally, we decompressed the file back to its original form.

gzip can also be used in interesting ways via standard input and output:

[me@linuxbox ~]$ 1s -1 /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.

The gunzip program, which uncompresses gzip files, assumes that filenames end in the
extension .z, so it’s not necessary to specify it, as long as the specified name is not in
conflict with an existing uncompressed file:

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we can do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternately, there is a program supplied with gzip, called zcat, that is equivalent to
gunzip with the - c option. It can be used like the cat command on gzip compressed
files:

[me@linuxbox ~]$ zcat foo.txt.gz | less

Tip: There is a z1ess program, too. It performs the same function as the pipeline
above.

bzip2

The bzip2 program, by Julian Seward, is similar to gzip, but uses a different
compression algorithm that achieves higher levels of compression at the cost of
compression speed. In most regards, it works in the same fashion as gzip. A file
compressed with bzip2 is denoted with the extension .bz2:

233

19 — Archiving And Backup

[me@linuxbox ~]$ 1s -1 /etc > foo.txt

[me@linuxbox ~]$ 1s -1 foo.txt

-rw-r--r-- 1 me me 15738 2008-10-17 13:51 foo.txt
[me@linuxbox ~]$ bzip2 foo.txt

[me@linuxbox ~]$ 1s -1 foo.txt.bz2

-rw-r--r-- 1 me me 2792 2008-10-17 13:51 foo.txt.bz2
[me@linuxbox ~]$ bunzip2 foo.txt.bz2

As we can see, bzip2 can be used the same way as gzip. All the options (except for -
r) that we discussed for gzip are also supported in bzip2. Note, however, that the
compression level option (-number) has a somewhat different meaning to bzip2.
bzip2 comes with bunzip?2 and bzcat for decompressing files.

bzip2 also comes with the bzip2recover program, which will try to recover
damaged . bz?2 files.

Don’t Be Compressive Compulsive

I occasionally see people attempting to compress a file, which has been already
compressed with an effective compression algorithm, by doing something like
this:

$ gzip picture.jpg

Don’t do it. You're probably just wasting time and space! If you apply
compression to a file that is already compressed, you will actually end up a larger
file. This is because all compression techniques involve some overhead that is
added to the file to describe the compression. If you try to compress a file that
already contains no redundant information, the compression will not result in any
savings to offset the additional overhead.

Archiving Files

A common file management task used in conjunction with compression is archiving.
Archiving is the process of gathering up many files and bundling them together into a
single large file. Archiving is often done as a part of system backups. It is also used
when old data is moved from a system to some type of long-term storage.

tar

In the Unix-like world of software, the tar program is the classic tool for archiving files.

234

Archiving Files

Its name, short for tape archive, reveals its roots as a tool for making backup tapes.
While it is still used for that traditional task, it is equally adept on other storage devices as
well. We often see filenames that end with the extension . tar or . tgz which indicate a
“plain” tar archive and a gzipped archive, respectively. A tar archive can consist of a
group of separate files, one or more directory hierarchies, or a mixture of both. The
command syntax works like this:

tar mode[options] pathname. ..

where mode is one of the following operating modes (only a partial list is shown here;
see the tar man page for a complete list):

Table 19-2: tar Modes

Mode Description

C Create an archive from a list of files and/or directories.
X Extract an archive.

r Append specified pathnames to the end of an archive.
t List the contents of an archive.

tar uses a slightly odd way of expressing options, so we’ll need some examples to show
how it works. First, let’s re-create our playground from the previous chapter:

[me@linuxbox ~]$ mkdir -p playground/dir-{00{1..9},0{10..99},100}
[me@linuxbox ~]$ touch playground/dir-{e0{1..9},0{10..99},100}/file-

{A-z}

Next, let’s create a tar archive of the entire playground:

[me@linuxbox ~]$ tar cf playground.tar playground

This command creates a tar archive named playground. tar that contains the entire
playground directory hierarchy. We can see that the mode and the f option, which is
used to specify the name of the tar archive, may be joined together, and do not require a
leading dash. Note, however, that the mode must always be specified first, before any
other option.

To list the contents of the archive, we can do this:

235

19 — Archiving And Backup

[me@linuxbox ~]$ tar tf playground.tar

For a more detailed listing, we can add the v (verbose) option:

[me@linuxbox ~]$ tar tvf playground.tar

Now, let’s extract the playground in a new location. We will do this by creating a new
directory named f00, and changing the directory and extracting the tar archive:

[me@linuxbox ~]$ mkdir foo

[me@linuxbox ~]1%$ cd foo

[me@linuxbox foo]$ tar xf ../playground.tar
[me@linuxbox foo]$ 1s

playground

If we examine the contents of ~/foo/playground, we see that the archive was
successfully installed, creating a precise reproduction of the original files. There is one
caveat, however: unless you are operating as the superuser, files and directories extracted
from archives take on the ownership of the user performing the restoration, rather than
the original owner.

Another interesting behavior of tar is the way it handles pathnames in archives. The
default for pathnames is relative, rather than absolute. tar does this by simply removing
any leading slash from the pathname when creating the archive. To demonstrate, we will
recreate our archive, this time specifying an absolute pathname:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ tar cf playground2.tar ~/playground

Remember, ~/playground will expand into /home/me/playground when we
press the enter key, so we will get an absolute pathname for our demonstration. Next, we
will extract the archive as before and watch what happens:

[me@linuxbox ~]$ cd foo

[me@linuxbox foo]$ tar xf ../playground2.tar
[me@linuxbox foo]$ 1s

home playground

[me@linuxbox foo]$ 1s home

236

Archiving Files

me
[me@linuxbox foo]$ 1ls home/me
playground

Here we can see that when we extracted our second archive, it recreated the directory
home/me/playground relative to our current working directory, ~/f00, not relative
to the root directory, as would have been the case with an absolute pathname. This may
seem like an odd way for it to work, but it’s actually more useful this way, as it allows us
to extract archives to any location rather than being forced to extract them to their
original locations. Repeating the exercise with the inclusion of the verbose option (V)
will give a clearer picture of what’s going on.

Let’s consider a hypothetical, yet practical example, of tar in action. Imagine we want
to copy the home directory and its contents from one system to another and we have a
large USB hard drive that we can use for the transfer. On our modern Linux system, the
drive is “automagically” mounted in the /media directory. Let’s also imagine that the
disk has a volume name of BigDisk when we attach it. To make the tar archive, we
can do the following:

[me@linuxbox ~]$ sudo tar cf /media/BigDisk/home.tar /home

After the tar file is written, we unmount the drive and attach it to the second computer.
Again, it is mounted at /media/BigDisk. To extract the archive, we do this:

[me@linuxbox2 ~]$ cd /
[me@linuxbox2 /]$ sudo tar xf /media/BigDisk/home.tar

What’s important to see here is that we must first change directory to /, so that the
extraction is relative to the root directory, since all pathnames within the archive are
relative.

When extracting an archive, it’s possible to limit what is extracted from the archive. For
example, if we wanted to extract a single file from an archive, it could be done like this:

tar xf archive. tar pathname

By adding the trailing pathname to the command, tar will only restore the specified file.
Multiple pathnames may be specified. Note that the pathname must be the full, exact

237

19 — Archiving And Backup

relative pathname as stored in the archive. When specifying pathnames, wildcards are
not normally supported; however, the GNU version of tar (which is the version most
often found in Linux distributions) supports them with the - -wildcards option. Here
is an example using our previous playground. tar file:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar --wildcards 'home/me/pla
yground/dir-*/file-A'

This command will extract only files matching the specified pathname including the
wildcard dir-*.

tar is often used in conjunction with find to produce archives. In this example, we
will use find to produce a set of files to include in an archive:

[me@linuxbox ~]$ find playground -name 'file-A' -exec tar rf
playground.tar '{}' '+'

Here we use find to match all the files in playground named file-A and then,
using the -exec action, we invoke tar in the append mode (r) to add the matching
files to the archive playground. tar.

Using tar with find is a good way of creating incremental backups of a directory tree
or an entire system. By using find to match files newer than a timestamp file, we could
create an archive that only contains files newer than the last archive, assuming that the
timestamp file is updated right after each archive is created.

tar can also make use of both standard input and output. Here is a comprehensive
example:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name 'file-A' | tar cf - --files-
from=- | gzip > playground.tgz

In this example, we used the find program to produce a list of matching files and piped
them into tar. If the filename “-” is specified, it is taken to mean standard input or
output, as needed (by the way, this convention of using “-” to represent standard
input/output is used by a number of other programs, too.) The --files-from option
(which may be also be specified as -T) causes tar to read its list of pathnames from a

238

Archiving Files

file rather than the command line. Lastly, the archive produced by tar is piped into
gzip to create the compressed archive playground. tgz. The . tgz extension is the
conventional extension given to gzip-compressed tar files. The extension .tar.gz is
also used sometimes.

While we used the gzip program externally to produced our compressed archive,
modern versions of GNU tar support both gzip and bzip2 compression directly, with the
use of the z and j options, respectively. Using our previous example as a base, we can
simplify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf
playground.tgz -T -

If we had wanted to create a bzip2 compressed archive instead, we could have done this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf
playground.tbz -T -

By simply changing the compression option from z to j (and changing the output file’s
extension to . tbz to indicate a bzip2 compressed file) we enabled bzip2 compression.

Another interesting use of standard input and output with the tar command involves
transferring files between systems over a network. Imagine that we had two machines
running a Unix-like system equipped with tar and ssh. In such a scenario, we could
transfer a directory from a remote system (named remote-sys for this example) to our
local system:

[me@linuxbox ~]%$ mkdir remote-stuff

[me@linuxbox ~]$ cd remote-stuff

[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar
xf -

me@remote-sys’s password:

[me@linuxbox remote-stuff]$ 1s

Documents

Here we were able to copy a directory named Documents from the remote system
remote-sys to a directory within the directory named remote-stuff on the local
system. How did we do this? First, we launched the tar program on the remote system
using ssh. You will recall that ssh allows us to execute a program remotely on a
networked computer and “see” the results on the local system—the standard output

239

19 — Archiving And Backup

produced on the remote system is sent to the local system for viewing. We can take
advantage of this by having tar create an archive (the ¢ mode) and send it to standard
output, rather than a file (the option with the dash argument), thereby transporting the
archive over the encrypted tunnel provided by ssh to the local system. On the local
system, we execute tar and have it expand an archive (the X mode) supplied from
standard input (again, the T option with the dash argument).

zip

The zip program is both a compression tool and an archiver. The file format used by
the program is familiar to Windows users, as it reads and writes .zip files. In Linux,
however, gzip is the predominant compression program with bzip2 being a close
second.

In its most basic usage, zip is invoked like this:
zip options zipfile file...

For example, to make a zip archive of our playground, we would do this:

[me@linuxbox ~]$ zip -r playground.zip playground

Unless we include the -r option for recursion, only the playground directory (but
none of its contents) is stored. Although the addition of the extension .z1p is automatic
a, we will include the file extension for clarity.

During the creation of the zip archive, zip will normally display a series of messages
like this:

adding: playground/dir-020/file-Z (stored 0%)
adding: playground/dir-020/file-Y (stored 0%)
adding: playground/dir-020/file-X (stored 0%)
adding: playground/dir-087/ (stored 0%)

adding: playground/dir-087/file-S (stored 0%)

These messages show the status of each file added to the archive. zip will add files to
the archive using one of two storage methods: either it will “store” a file without
compression, as shown here, or it will “deflate” the file which performs compression.
The numeric value displayed after the storage method indicates the amount of
compression achieved. Since our playground only contains empty files, no compression
is performed on its contents.

240

Archiving Files

Extracting the contents of a zip file is straightforward when using the unzip program:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip

One thing to note about zip (as opposed to tar) is that if an existing archive is
specified, it is updated rather than replaced. This means that the existing archive is
preserved, but new files are added and matching files are replaced.

Files may be listed and extracted selectively from a zip archive by specifying them to
unzip:

[me@linuxbox ~]$ unzip -1 playground.zip playground/dir-87/file-Z
Archive: ../playground.zip
Length Date Time Name

0 10-05-08 09:25 playground/dir-87/file-Z

[me@linuxbox ~]%$ cd foo

[me@linuxbox foo]$ unzip ./playground.zip playground/dir-87/file-zZ
Archive: ../playground.zip

replace playground/dir-87/file-Z? [y]es, [n]o, [A]ll, [N]one,
[r]lename: y

extracting: playground/dir-87/file-Z

Using the -1 option causes unzip to merely list the contents of the archive without
extracting the file. If no file(s) are specified, unzip will list all files in the archive. The
-V option can be added to increase the verbosity of the listing. Note that when the
archive extraction conflicts with an existing file, the user is prompted before the file is
replaced.

Like tar, zip can make use of standard input and output, though its implementation is
somewhat less useful. It is possible to pipe a list of filenames to zip via the -@ option:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name "file-A" | zip -@ file-A.zip

Here we use find to generate a list of files matching the test -name "file-A", and
pipe the list into zip, which creates the archive file-A.zip containing the selected
files.

241

19 — Archiving And Backup

Z1ip also supports writing its output to standard output, but its use is limited because very
few programs can make use of the output. Unfortunately, the unzip program, does not
accept standard input. This prevents zip and unzip from being used together to
perform network file copying like tar.

zip can, however, accept standard input, so it can be used to compress the output of
other programs:

[me@linuxbox ~]%$ 1s -1 /etc/ | zip ls-etc.zip -
adding: - (deflated 80%)

In this example we pipe the output of 1s into zip. Like tar, zip interprets the trailing
dash as “use standard input for the input file.”

The unzip program allows its output to be sent to standard output when the -p (for
pipe) option is specified:

[me@linuxbox ~]$ unzip -p 1ls-etc.zip | less

We touched on some of the basic things that zip/unzip can do. They both have a lot of
options that add to their flexibility, though some are platform specific to other systems.
The man pages for both zip and unzip are pretty good and contain useful examples.
However, the main use of these programs is for exchanging files with Windows systems,
rather than performing compression and archiving on Linux, where tar and gzip are
greatly preferred.

Synchronizing Files And Directories

A common strategy for maintaining a backup copy of a system involves keeping one or
more directories synchronized with another directory (or directories) located on either the
local system (usually a removable storage device of some kind) or with a remote system.
We might, for example, have a local copy of a web site under development and
synchronize it from time to time with the “live” copy on a remote web server.

In the Unix-like world, the preferred tool for this task is rsync. This program can
synchronize both local and remote directories by using the rsync remote-update protocol,
which allows rsync to quickly detect the differences between two directories and
perform the minimum amount of copying required to bring them into sync. This makes
rsync very fast and economical to use, compared to other kinds of copy programs.

rsync is invoked like this:

242

Synchronizing Files And Directories

rsync options source destination
where source and destination are one of the following:
e Alocal file or directory
e A remote file or directory in the form of [user@]host:path
e A remote rsync server specified with a URI of rsync://[user@]host[:port]/path

Note that either the source or destination must be a local file. Remote to remote copying
is not supported.

Let’s try rsync out on some local files. First, let’s clean out our f00 directory:

[me@linuxbox ~]$ rm -rf foo/*

Next, we’ll synchronize the playground directory with a corresponding copy in f00:

[me@linuxbox ~]$ rsync -av playground foo

We’ve included both the -a option (for archiving— causes recursion and preservation of
file attributes) and the - Vv option (verbose output) to make a mirror of the playground
directory within foo. While the command runs, we will see a list of the files and
directories being copied. At the end, we will see a summary message like this:

sent 135759 bytes received 57870 bytes 387258.00 bytes/sec
total size is 3230 speedup is 0.02

indicating the amount of copying performed. If we run the command again, we will see a
different result:

[me@linuxbox ~]$ rsync -av playgound foo
building file list ... done

sent 22635 bytes received 20 bytes 45310.00 bytes/sec
total size is 3230 speedup is 0.14

Notice that there was no listing of files. This is because rsync detected that there were
no differences between ~/playground and ~/foo/playground, and therefore it

243

19 — Archiving And Backup

didn’t need to copy anything. If we modify a file in playground and run rsync
again:

[me@linuxbox ~]$ touch playground/dir-099/file-Z
[me@linuxbox ~]$ rsync -av playground foo

building file list ... done

playground/dir-099/file-Z

sent 22685 bytes received 42 bytes 45454.00 bytes/sec
total size is 3230 speedup is 0.14

we see that rsync detected the change and copied only the updated file.

As a practical example, let’s consider the imaginary external hard drive that we used
earlier with tar. If we attach the drive to our system and, once again, it is mounted at /
media/BigDisk, we can perform a useful system backup by first creating a directory,
named /backup on the external drive and then using rsync to copy the most important
stuff from our system to the external drive:

[me@linuxbox ~]$ mkdir /media/BigDisk/backup
[me@linuxbox ~]$ sudo rsync -av --delete /etc /home /usr/local
/media/BigDisk/backup

In this example, we copied the /etc, /home, and /usr/local directories from our
system to our imaginary storage device. We included the - -delete option to remove
files that may have existed on the backup device that no longer existed on the source
device (this is irrelevant the first time we make a backup, but will be useful on
subsequent copies.) Repeating the procedure of attaching the external drive and running
this rsync command would be a useful (though not ideal) way of keeping a small
system backed up. Of course, an alias would be helpful here, too. We could create an
alias and add it to our . bashrc file to provide this feature:

alias backup='sudo rsync -av --delete /etc /home /usr/local
/media/Bigbisk/backup’

Now all we have to do is attach our external drive and run the backup command to do
the job.

244

Synchronizing Files And Directories

Using rsync Over A Network

One of the real beauties of rsync is that it can be used to copy files over a network.
After all, the “r” in rsync stands for “remote.” Remote copying can be done in one of
two ways. The first way is with another system that has rsync installed, along with a
remote shell program such as ssh. Let’s say we had another system on our local
network with a lot of available hard drive space and we wanted to perform our backup
operation using the remote system instead of an external drive. Assuming that it already
had a directory named /backup where we could deliver our files, we could do this:

[me@linuxbox ~]$ sudo rsync -av --delete --rsh=ssh /etc /home
/usr/local remote-sys:/backup

We made two changes to our command to facilitate the network copy. First, we added
the - -rsh=ssh option, which instructs rsync to use the ssh program as its remote
shell. In this way, we were able to use an ssh encrypted tunnel to securely transfer the
data from the local system to the remote host. Second, we specified the remote host by
prefixing its name (in this case the remote host is named remote-sys) to the
destination path name.

The second way that rsync can be used to synchronize files over a network is by using
an rysnc server. rsync can be configured to run as a daemon and listen to incoming
requests for synchronization. This is often done to allow mirroring of a remote system.
For example, Red Hat Software maintains a large repository of software packages under
development for its Fedora distribution. It is useful for software testers to mirror this
collection during the testing phase of the distribution release cycle. Since files in the
repository change frequently (often more than once a day), it is desirable to maintain a
local mirror by periodic synchronization, rather than by bulk copying of the repository.
One of these repositories is kept at Georgia Tech; we could mirror it using our local copy
of rsync and their rsync server like this:

[me@linuxbox ~]$ mkdir fedora-devel
[me@linuxbox ~]$ rsync -av -delete rsync://rsync.gtlib.gatech.edu/fed
ora-linux-core/development/i386/0s fedora-devel

In this example, we use the URI of the remote rsync server, which consists of a protocol
(rsync://), followed by the remote host name (rsync.gtlib.gatech.edu),
followed by the pathname of the repository.

245

19 — Archiving And Backup

Further Reading

e The man pages for all of the commands discussed here are pretty clear and
contain useful examples. In addition, the GNU Project has a good online manual
for its version of tar. It can be found here:

http://www.gnu.org/software/tar/manual/index.html

246

http://www.gnu.org/software/tar/manual/index.html

20 — Regular Expressions

20 - Regular Expressions

In the next few chapters, we are going to look at tools used to manipulate text. As we
have seen, text data plays an important role on all Unix-like systems, such as Linux. But
before we can fully appreciate all of the features offered by these tools, we have to first
examine a technology that is frequently associated with the most sophisticated uses of
these tools—regular expressions.

As we have navigated the many features and facilities offered by the command line, we
have encountered some truly arcane shell features and commands, such as shell
expansion and quoting, keyboard shortcuts, and command history, not to mention the vi
editor. Regular expressions continue this “tradition” and may be (arguably) the most
arcane feature of them all. This is not to suggest that the time it takes to learn about them
is not worth the effort. Quite the contrary. A good understanding will enable us to
perform amazing feats, though their full value may not be immediately apparent.

What Are Regular Expressions?

Simply put, regular expressions are symbolic notations used to identify patterns in text.
In some ways, they resemble the shell’s wildcard method of matching file and pathnames,
but on a much grander scale. Regular expressions are supported by many command line
tools and by most programming languages to facilitate the solution of text manipulation
problems. However, to further confuse things, not all regular expressions are the same;
they vary slightly from tool to tool and from programming language to language. For our
discussion, we will limit ourselves to regular expressions as described in the POSIX
standard (which will cover most of the command line tools), as opposed to many
programming languages (most notably Perl), which use slightly larger and richer sets of
notations.

grep
The main program we will use to work with regular expressions is our old pal, grep.
The name “grep” is actually derived from the phrase “global regular expression print,” so
we can see that grep has something to do with regular expressions. In essence, grep
searches text files for the occurrence of a specified regular expression and outputs any

247

20 — Regular Expressions

line containing a match to standard output.

So far, we have used grep with fixed strings, like so:

[me@linuxbox ~]$ 1ls /usr/bin | grep zip

This will list all the files in the /usr/bin directory whose names contain the substring

[{ySpgy))

zip”.

The grep program accepts options and arguments this way:
grep [options] regex [file...]

where regex is a regular expression.

Here is a list of the commonly used grep options:

Table20-1: grep Options

Option Description

-1 Ignore case. Do not distinguish between upper and lower case
characters. May also be specified - -ignore-case.

-V Invert match. Normally, grep prints lines that contain a match.
This option causes grep to print every line that does not contain a
match. May also be specified - -invert-match.

-C Print the number of matches (or non-matches if the -v option is
also specified) instead of the lines themselves. May also be
specified - -count.

-1 Print the name of each file that contains a match instead of the lines
themselves. May also be specified - -files-with-matches.

-L Like the -1 option, but print only the names of files that do not
contain matches. May also be specified - -files-without -
match.

-n Prefix each matching line with the number of the line within the

file. May also be specified --1ine-number.

-h For multi-file searches, suppress the output of filenames. May also
be specified - -no-filename.

In order to more fully explore grep, let’s create some text files to search:

248

grep

[me@linuxbox ~]$ 1s /bin > dirlist-bin.txt

[me@linuxbox ~]$ 1s /usr/bin > dirlist-usr-bin.txt
[me@linuxbox ~]$ 1s /sbin > dirlist-sbhin.txt

[me@linuxbox ~]$ 1s /usr/sbin > dirlist-usr-sbhin.txt
[me@linuxbox ~]$ 1ls dirlist*.txt

dirlist-bin.txt dirlist-sbin.txt dirlist-usr-sbhin.txt
dirlist-usr-bin.txt

We can perform a simple search of our list of files like this:

[me@linuxbox ~]$ grep bzip dirlist*.txt
dirlist-bin.txt:bzip2
dirlist-bin.txt:bzip2recover

In this example, grep searches all of the listed files for the string bzip and finds two
matches, both in the file dirlist-bin. txt. If we were only interested in the list of
files that contained matches rather than the matches themselves, we could specify the -1
option:

[me@linuxbox ~]% grep -1 bzip dirlist*.txt
dirlist-bin.txt

Conversely, if we wanted only to see a list of the files that did not contain a match, we
could do this:

[me@linuxbox ~]$ grep -L bzip dirlist*.txt
dirlist-sbin. txt

dirlist-usr-bin. txt

dirlist-usr-sbin.txt

Metacharacters And Literals

While it may not seem apparent, our grep searches have been using regular expressions
all along, albeit very simple ones. The regular expression “bzip” is taken to mean that a
match will occur only if the line in the file contains at least four characters and that
somewhere in the line the characters “b”, “z”, “i”, and “p” are found in that order, with no
other characters in between. The characters in the string “bzip” are all literal characters,

in that they match themselves. In addition to literals, regular expressions may also

249

20 — Regular Expressions

include metacharacters that are used to specify more complex matches. Regular
expression metacharacters consist of the following:

AT O U A O B

All other characters are considered literals, though the backslash character is used in a
few cases to create meta sequences, as well as allowing the metacharacters to be escaped
and treated as literals instead of being interpreted as metacharacters.

Note: As we can see, many of the regular expression metacharacters are also
characters that have meaning to the shell when expansion is performed. When we
pass regular expressions containing metacharacters on the command line, it is vital
that they be enclosed in quotes to prevent the shell from attempting to expand them.

The Any Character

The first metacharacter we will look at is the dot or period character, which is used to
match any character. If we include it in a regular expression, it will match any character
in that character position. Here’s an example:

[me@linuxbox ~]% grep -h '.zip' dirlist*.txt
bunzip2
bzip2
bzip2recover
gunzip

gzip

funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

We searched for any line in our files that matches the regular expression “.zip”. There are
a couple of interesting things to note about the results. Notice that the zip program was
not found. This is because the inclusion of the dot metacharacter in our regular
expression increased the length of the required match to four characters, and because the
name “zip” only contains three, it does not match. Also, if there had been any files in our
lists that contained the file extension .zip, they would have also been matched as well,
because the period character in the file extension is treated as “any character,” too.

250

Anchors

Anchors

The caret (M) and dollar sign ($) characters are treated as anchors in regular expressions.
This means that they cause the match to occur only if the regular expression is found at
the beginning of the line (/) or at the end of the line ($):

[me@linuxbox ~]$ grep -h 'Azip' dirlist*.txt
zip

zipcloak

zipgrep

zipinfo

zipnote

zipsplit

[me@linuxbox ~]$ grep -h 'zip$' dirlist*.txt
gunzip

gzip

funzip

gpg-zip

preunzip

prezip

unzip

zip

[me@linuxbox ~]$ grep -h '"Azip$' dirlist*.txt
zip

Here we searched the list of files for the string “zip” located at the beginning of the line,
the end of the line, and on a line where it is at both the beginning and the end of the line
(i.e., by itself on the line.) Note that the regular expression ‘A$’ (a beginning and an end
with nothing in between) will match blank lines.

A Crossword Puzzle Helper

Even with our limited knowledge of regular expressions at this point, we can do
something useful.

My wife loves crossword puzzles and she will sometimes ask me for help with a
particular question. Something like, “what’s a five letter word whose third letter
is ‘j” and last letter is ‘r’ that means...?” This kind of question got me thinking.

Did you know that your Linux system contains a dictionary? It does. Take a look
in the /usr/share/dict directory and you might find one, or several. The
dictionary files located there are just long lists of words, one per line, arranged in
alphabetical order. On my system, the words file contains just over 98,500

251

20 — Regular Expressions

words. To find possible answers to the crossword puzzle question above, we
could do this:

[me@linuxbox ~]% grep -i 'A..j.r$' /usr/share/dict/words

Major

major

Using this regular expression, we can find all the words in our dictionary file that
are five letters long and have a “j” in the third position and an in the last

position.

({39]
r

Bracket Expressions And Character Classes

In addition to matching any character at a given position in our regular expression, we
can also match a single character from a specified set of characters by using bracket
expressions. With bracket expressions, we can specify a set of characters (including
characters that would otherwise be interpreted as metacharacters) to be matched. In this
example, using a two character set:

[me@linuxbox ~]%$ grep -h '[bg]zip' dirlist*.txt
bzip2

bzip2recover

gzip

we match any line that contains the string “bzip” or “gzip”.

A set may contain any number of characters, and metacharacters lose their special
meaning when placed within brackets. However, there are two cases in which
metacharacters are used within bracket expressions, and have different meanings. The
first is the caret (M), which is used to indicate negation; the second is the dash (-), which
is used to indicate a character range.

Negation

If the first character in a bracket expression is a caret (), the remaining characters are
taken to be a set of characters that must not be present at the given character position. We
do this by modifying our previous example:

[me@linuxbox ~]$ grep -h '[Abg]zip' dirlist*.txt
bunzip2

252

Bracket Expressions And Character Classes

gunzip
funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

With negation activated, we get a list of files that contain the string “zip” preceded by any
character except “b” or “g”. Notice that the file zip was not found. A negated character
set still requires a character at the given position, but the character must not be a member
of the negated set.

The caret character only invokes negation if it is the first character within a bracket
expression; otherwise, it loses its special meaning and becomes an ordinary character in
the set.

Traditional Character Ranges

If we wanted to construct a regular expression that would find every file in our lists
beginning with an upper case letter, we could do this:

[me@linuxbox ~]$ grep -h 'A[ABCDEFGHIJKLMNOPQRSTUVWXZY]' dirlist*.txt

It’s just a matter of putting all twenty-six upper case letters in a bracket expression. But
the idea of all that typing is deeply troubling, so there is another way:

[me@linuxbox ~]%$ grep -h 'A[A-Z]' dirlist*.txt
MAKEDEV

ControlPanel

GET

HEAD

POST

X

X11

Xorg

MAKEFLOPPIES
NetworkManager
NetworkManagerDispatcher

By using a three character range, we can abbreviate the twenty-six letters. Any range of

253

20 — Regular Expressions

characters can be expressed this way including multiple ranges, such as this expression
that matches all filenames starting with letters and numbers:

[me@linuxbox ~]% grep -h 'A[A-Za-z0-9]' dirlist*.txt

In character ranges, we see that the dash character is treated specially, so how do we
actually include a dash character in a bracket expression? By making it the first character
in the expression. Consider these two examples:

[me@linuxbox ~]$ grep -h '[A-Z]' dirlist*.txt

This will match every filename containing an upper case letter. While:
[me@linuxbox ~]$ grep -h '[-AZ]' dirlist*.txt

will match every filename containing a dash, or a upper case “A” or an uppercase “Z”.

POSIX Character Classes

The traditional character ranges are an easily understood and effective way to handle the
problem of quickly specifying sets of characters. Unfortunately, they don’t always work.
While we have not encountered any problems with our use of grep so far, we might run
into problems using other programs.

Back in Chapter 5, we looked at how wildcards are used to perform pathname expansion.
In that discussion, we said that character ranges could be used in a manner almost
identical to the way they are used in regular expressions, but here’s the problem:

[me@linuxbox ~]%$ 1s /usr/sbin/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]*
/usr/sbin/MAKEFLOPPIES

/usr/sbin/NetworkManagerDispatcher

/usr/sbin/NetworkManager

(Depending on the Linux distribution, we will get a different list of files, possibly an
empty list. This example is from Ubuntu) This command produces the expected result
—a list of only the files whose names begin with an uppercase letter, but:

254

Bracket Expressions And Character Classes

[me@linuxbox ~]$ 1s /usr/sbin/[A-Z]*
/usr/sbin/biosdecode

/usr/sbin/chat

/usr/sbin/chgpasswd
/usr/sbin/chpasswd

/usr/sbin/chroot
/usr/sbin/cleanup-info
/usr/sbin/complain
/usr/shin/console-kit-daemon

with this command we get an entirely different result (only a partial listing of the results
is shown). Why is that? It’s a long story, but here’s the short version:

Back when Unix was first developed, it only knew about ASCII characters, and this
feature reflects that fact. In ASCII, the first thirty-two characters (numbers 0-31) are
control codes (things like tabs, backspaces, and carriage returns). The next thirty-two
(32-63) contain printable characters, including most punctuation characters and the
numerals zero through nine. The next thirty-two (numbers 64-95) contain the uppercase
letters and a few more punctuation symbols. The final thirty-one (numbers 96-127)
contain the lowercase letters and yet more punctuation symbols. Based on this
arrangement, systems using ASCII used a collation order that looked like this:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

This differs from proper dictionary order, which is like this:
aAbBcCdDeEfFgGhHiIjJkK1LmMMNNoOpPqQrRsStTuUVvVwWWXXyYzZ

As the popularity of Unix spread beyond the United States, there grew a need to support
characters not found in U.S. English. The ASCII table was expanded to use a full eight
bits, adding characters numbers 128-255, which accommodated many more languages.
To support this ability, the POSIX standards introduced a concept called a locale, which
could be adjusted to select the character set needed for a particular location. We can see
the language setting of our system using this command:

[me@linuxbox ~]$ echo $LANG
en_US.UTF-8

With this setting, POSIX compliant applications will use a dictionary collation order
rather than ASCII order. This explains the behavior of the commands above. A character
range of [A-Z] when interpreted in dictionary order includes all of the alphabetic
characters except the lowercase “a”, hence our results.

To partially work around this problem, the POSIX standard includes a number of
character classes which provide useful ranges of characters. They are described in the

255

20 — Regular Expressions

table below:
Table 20-2: POSIX Character Classes

Character Class Description

[:alnum:] The alphanumeric characters. In ASCII, equivalent to:
[A-Za-z0-9]

[:word:] The same as [:alnum:], with the addition of the underscore
(L) character.

[ralpha:] The alphabetic characters. In ASCII, equivalent to:
[A-Za-z]

[:blank:] Includes the space and tab characters.

[:cntrl:] The ASCII control codes. Includes the ASCII characters zero
through thirty-one and 127.

[:digit:] The numerals zero through nine.

[:graph:] The visible characters. In ASCII, it includes characters 33
through 126.

[:lower:] The lowercase letters.

[:punct:] The punctuation characters. In ASCII, equivalent to:
[-1"#8%&" ()*+, ./1;<=>?@[\\\]_"{|3}~]

[:print:] The printable characters. All the characters in [:graph:]

plus the space character.

[:space:] The whitespace characters including space, tab, carriage
return, newline, vertical tab, and form feed. In ASCII,

equivalent to:
[\t\r\n\v\f]

[:upper:] The upper case characters.

[:xdigit:] Characters used to express hexadecimal numbers. In ASCII,
equivalent to:
[0-9A-Fa-f]

Even with the character classes, there is still no convenient way to express partial ranges,
such as [A-M].

Using character classes, we can repeat our directory listing and see an improved result:

256

Bracket Expressions And Character Classes

[me@linuxbox ~]$ 1s /usr/sbin/[[:upper:]]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Remember, however, that this is not an example of a regular expression, rather it is the
shell performing pathname expansion. We show it here because POSIX character classes
can be used for both.

Reverting To Traditional Collation Order

You can opt to have your system use the traditional (ASCII) collation order by
changing the value of the LANG environment variable. As we saw above, the
LANG variable contains the name of the language and character set used in your
locale. This value was originally determined when you selected an installation
language as your Linux was installed.

To see the locale settings, use the 1locale command:

[me@linuxbox ~]$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

To change the locale to use the traditional Unix behaviors, set the LANG variable
to POSIX:

[me@linuxbox ~]$ export LANG=POSIX

Note that this change converts the system to use U.S. English (more specifically,
ASCII) for its character set, so be sure if this is really what you want.

257

20 — Regular Expressions

You can make this change permanent by adding this line to you your . bashrc
file:

export LANG=POSIX

POSIX Basic Vs. Extended Regular Expressions

Just when we thought this couldn’t get any more confusing, we discover that POSIX also
splits regular expression implementations into two kinds: basic regular expressions
(BRE) and extended regular expressions (ERE). The features we have covered so far are
supported by any application that is POSIX-compliant and implements BRE. Our grep
program is one such program.

What’s the difference between BRE and ERE? It’s a matter of metacharacters. With
BRE, the following metacharacters are recognized:

AR B

All other characters are considered literals. With ERE, the following metacharacters (and
their associated functions) are added:

() {37+

However (and this is the fun part), the “(”, “)”, “{”, and “}” characters are treated as
metacharacters in BRE if they are escaped with a backslash, whereas with ERE,
preceding any metacharacter with a backslash causes it to be treated as a literal. Any
weirdness that comes along will be covered in the discussions that follow.

Since the features we are going to discuss next are part of ERE, we are going to need to
use a different grep. Traditionally, this has been performed by the egrep program, but
the GNU version of grep also supports extended regular expressions when the -E
option is used.

POSIX

During the 1980’s, Unix became a very popular commercial operating system, but
by 1988, the Unix world was in turmoil. Many computer manufacturers had
licensed the Unix source code from its creators, AT&T, and were supplying
various versions of the operating system with their systems. However, in their
efforts to create product differentiation, each manufacturer added proprietary
changes and extensions. This started to limit the compatibility of the software.

258

POSIX Basic Vs. Extended Regular Expressions

As always with proprietary vendors, each was trying to play a winning game of
“lock-in” with their customers. This dark time in the history of Unix is known
today as “the Balkanization.”

Enter the IEEE (Institute of Electrical and Electronics Engineers). In the
mid-1980s, the IEEE began developing a set of standards that would define how
Unix (and Unix-like) systems would perform. These standards, formally known
as [EEE 1003, define the application programming interfaces (APIs), shell and
utilities that are to be found on a standard Unix-like system. The name “POSIX,”
which stands for Portable Operating System Interface (with the “X” added to the
end for extra snappiness), was suggested by Richard Stallman (yes, that Richard
Stallman), and was adopted by the IEEE.

Alternation

The first of the extended regular expression features we will discuss is called alternation,
which is the facility that allows a match to occur from among a set of expressions. Just
as a bracket expression allows a single character to match from a set of specified
characters, alternation allows matches from a set of strings or other regular expressions.

To demonstrate, we’ll use grep in conjunction with echo. First, let’s try a plain old
string match:

[me@linuxbox ~]$ echo "AAA" | grep AAA
AAA

[me@linuxbox ~]$%$ echo "BBB" | grep AAA
[me@linuxbox ~]1$

A pretty straightforward example, in which we pipe the output of echo into grep and
see the results. When a match occurs, we see it printed out; when no match occurs, we
see no results.

Now we’ll add alternation, signified by the vertical bar metacharacter:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB'
AAA

[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB

[me@linuxbox ~]$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~]$

259

20 — Regular Expressions

Here we see the regular expression 'AAA|BBB' which means “match either the string
AAA or the string BBB.” Notice that since this is an extended feature, we added the -E
option to grep (though we could have just used the egrep program instead), and we
enclosed the regular expression in quotes to prevent the shell from interpreting the
vertical bar metacharacter as a pipe operator. Alternation is not limited to two choices:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB|CCC'
AAA

To combine alternation with other regular expression elements, we can use () to separate
the alternation:

[me@linuxbox ~]$ grep -Eh 'A(bz|gz|zip)' dirlist*.txt

This expression will match the filenames in our lists that start with either “bz”, “gz”, or
“zip”. Had we left off the parentheses, the meaning of this regular expression :

[me@linuxbox ~]$ grep -Eh 'Abz|gz|zip' dirlist*.txt

changes to match any filename that begins with “bz” or contains “gz” or contains “zip”.

Quantifiers

Extended regular expressions support several ways to specify the number of times an
element is matched.

? - Match An Element Zero Or One Time

This quantifier means, in effect, “make the preceding element optional.” Let’s say we
wanted to check a phone number for validity and we considered a phone number to be
valid if it matched either of these two forms:

(nnn) nnn-nnnn

nnn nnn-nnnn
where “n” is a numeral. We could construct a regular expression like this:
A\ (?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

In this expression, we follow the parentheses characters with question marks to indicate
that they are to be matched zero or one time. Again, since the parentheses are normally

260

Quantifiers

metacharacters (in ERE), we precede them with backslashes to cause them to be treated
as literals instead.

Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E 'A\(?[0-9][0-9][0-9]
\)? [0-9][0-9][0-9]$"

(555) 123-4567

[me@linuxbox ~]$ echo "555 123-4567" | grep -E '~\(?[0-9][0-9][0-9]\)
? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$"

555 123-4567

[me@linuxbox ~]$ echo "AAA 123-4567" | grep -E '~\(?[0-9][0-9][0-9]\)
? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$"

[me@linuxbox ~1$

Here we see that the expression matches both forms of the phone number, but does not
match one containing non-numeric characters.

* - Match An Element Zero Or More Times

Like the ? metacharacter, the * is used to denote an optional item; however, unlike the ?,
the item may occur any number of times, not just once. Let’s say we wanted to see if a
string was a sentence; that is, it starts with an uppercase letter, then contains any number
of upper and lowercase letters and spaces, and ends with a period. To match this (very
crude) definition of a sentence, we could use a regular expression like this:

[[:upper:]][[:upper:][:lower:]]*\.

The expression consists of three items: a bracket expression containing the [: upper:]
character class, a bracket expression containing both the [:upper:] and [: lower:]
character classes and a space, and a period escaped with a backslash. The second element
is trailed with an * metacharacter, so that after the leading uppercase letter in our
sentence, any number of upper and lowercase letters and spaces may follow it and still
match:

[me@linuxbox ~]$ echo "This works." | grep -E '[[:upper:]][[:upper:][
:lower:]]*\.'

This works.

[me@linuxbox ~]$ echo "This Works." | grep -E '[[:upper:]]1[[:upper:][
:lower:]]*\.'

This Works.

[me@linuxbox ~]$ echo "this does not" | grep -E '[[:upper:]][[:upper:
1[:1lower:]]*\.'

[me@linuxbox ~]$

261

20 — Regular Expressions

The expression matches the first two tests, but not the third, since it lacks the required
leading uppercase character and trailing period.

+ - Match An Element One Or More Times

The + metacharacter works much like the *, except it requires at least one instance of the
preceding element to cause a match. Here is a regular expression that will only match
lines consisting of groups of one or more alphabetic characters separated by single
spaces:

A([[:alpha:]]+ ?)+$

[me@linuxbox ~]$ echo "This that" | grep -E 'A([[:alpha:]]+ ?)+$'
This that

[me@linuxbox ~]$ echo "a b c" | grep -E 'A([[:alpha:]]+ ?)+$'
abec

[me@linuxbox ~]$ echo "a b 9" | grep -E 'A([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$ echo "abc d" | grep -E 'A([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$

We see that this expression does not match the line “a b 9” because it contains a non-
alphabetic character; nor does it match “abc d” because more than one space character
separates the characters “c” and “d”.

{} - Match An Element A Specific Number Of Times

The { and } metacharacters are used to express minimum and maximum numbers of
required matches. They may be specified in four possible ways:

Table 20-3: Specifying The Number Of Matches

Specifier Meaning

{n} Match the preceding element if it occurs exactly n times.

{n,m} Match the preceding element if it occurs at least n times, but no
more than m times.

{n,} Match the preceding element if it occurs n or more times.

{,m} Match the preceding element if it occurs no more than m times.

Going back to our earlier example with the phone numbers, we can use this method of
specifying repetitions to simplify our original regular expression from:

262

Quantifiers

A\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

to:
M (?[0-9]1{3}\)? [0-9]{3}-[0-9]{4}%
Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E 'A\(?[0-9]{3}\)? [0O-
9]{3}-[0-9]{4}s’

(555) 123-4567

[me@linuxbox ~]$ echo "555 123-4567" | grep -E 'A\(?[0-9]1{3}\)? [0-9]
{3}-[0-9]{4}$'

555 123-4567

[me@linuxbox ~]$ echo "5555 123-4567" | grep -E '"A\(?[0-9]{3}\)? [0-9
1{3}-[0-9]{4}s'

[me@linuxbox ~]$%$

As we can see, our revised expression can successfully validate numbers both with and
without the parentheses, while rejecting those numbers that are not properly formatted.

Putting Regular Expressions To Work

Let’s look at some of the commands we already know and see how they can be used with
regular expressions.

Validating A Phone List With grep

In our earlier example, we looked at single phone numbers and checked them for proper
formatting. A more realistic scenario would be checking a list of numbers instead, so
let’s make a list. We’ll do this by reciting a magical incantation to the command line. It
will be magic because we have not covered most of the commands involved, but worry
not. We will get there in future chapters. Here is the incantation:

[me@linuxbox ~]$ for i in {1..10}; do echo "(${RANDOM:0:3}) ${RANDO
M:0:3}-${RANDOM:0:4}" >> phonelist.txt; done

This command will produce a file named phonelist.txt containing ten phone
numbers. Each time the command is repeated, another ten numbers are added to the list.
We can also change the value 10 near the beginning of the command to produce more or
fewer phone numbers. If we examine the contents of the file, however, we see we have a
problem:

263

20 — Regular Expressions

[me@linuxbox ~]$ cat phonelist.txt
(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440

Some of the numbers are malformed, which is perfect for our purposes, since we will use
grep to validate them.

One useful method of validation would be to scan the file for invalid numbers and display
the resulting list on the display:

[me@linuxbox ~]$ grep -Ev 'A\([0-9]{3}\) [0-9]{3}-[0-9]{4}$'
phonelist. txt

(292) 108-518

(129) 44-1379

[me@linuxbox ~]$

Here we use the -V option to produce an inverse match so that we will only output the
lines in the list that do not match the specified expression. The expression itself includes
the anchor metacharacters at each end to ensure that the number has no extra characters at
either end. This expression also requires that the parentheses be present in a valid
number, unlike our earlier phone number example.

Finding Ugly Filenames With find

The find command supports a test based on a regular expression. There is an important
consideration to keep in mind when using regular expressions in find versus grep.
Whereas grep will print a line when the line contains a string that matches an
expression, Tind requires that the pathname exactly match the regular expression. In the
following example, we will use find with a regular expression to find every pathname
that contains any character that is not a member of the following set:

[-_./0-9a-zA-Z]

Such a scan would reveal pathnames that contain embedded spaces and other potentially
offensive characters:

264

Putting Regular Expressions To Work

[me@linuxbox ~]$ find . -regex '.*["-_./0-9a-zA-Z].*'

Due to the requirement for an exact match of the entire pathname, we use . * at both ends
of the expression to match zero or more instances of any character. In the middle of the
expression, we use a negated bracket expression containing our set of acceptable
pathname characters.

Searching For Files With 1locate

The locate program supports both basic (the - -regexp option) and extended (the - -
regex option) regular expressions. With it, we can perform many of the same
operations that we performed earlier with our dirlist files:

[me@linuxbox ~]$ locate --regex 'bin/(bz|gz|zip)'
/bin/bzcat
/bin/bzcmp
/bin/bzdiff
/bin/bzegrep
/bin/bzexe
/bin/bzfgrep
/bin/bzgrep
/bin/bzip2
/bin/bzip2recover
/bin/bzless
/bin/bzmore
/bin/gzexe
/bin/gzip
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

Using alternation, we perform a search for pathnames that contain either bin/bz, bin/
gz,or /bin/zip.

Searching For Text In 1less And vim

less and vim both share the same method of searching for text. Pressing the / key
followed by a regular expression will perform a search. If we use less to view our
phonelist. txt file:

265

20 — Regular Expressions

[me@linuxbox ~]$ less phonelist.txt

Then search for our validation expression:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518

(129) 44-1379

(458) 273-1642
(686) 299-8268
(198) 307-2440

/M\([0-9]{3}\) [0-9]{3}-[0-9]{4}$

less will highlight the strings that match, leaving the invalid ones easy to spot:

(232) 298-2265

(624) 381-1078
(540) 126-1980

(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379

(458) 273-1642
(686) 299-8268
(198) 307-2440

(END)

vim, on the other hand, supports basic regular expressions, so our search expression
would look like this:

/([0-91\{3\}) [0-9]\{3\}-[0-9]\{4\}
We can see that the expression is mostly the same; however, many of the characters that

are considered metacharacters in extended expressions are considered literals in basic
expressions. They are only treated as metacharacters when escaped with a backslash.

266

Putting Regular Expressions To Work

Depending on the particular configuration of vim on our system, the matching will be
highlighted. If not, try this command mode command:

:hlsearch

to activate search highlighting.

Note: Depending on your distribution, vim may or may not support text search
highlighting. Ubuntu, in particular, supplies a very stripped-down version of vim
by default. On such systems, you may want to use your package manager to install
a more complete version of vim.

Summing Up

In this chapter, we’ve seen a few of the many uses of regular expressions. We can find
even more if we use regular expressions to search for additional applications that use
them. We can do that by searching the man pages:

[me@linuxbox ~]$ cd /usr/share/man/mani
[me@linuxbox manl1]$ zgrep -El1 'regex|regular expression' *.gz

The zgrep program provides a front end for grep, allowing it to read compressed files.
In our example, we search the compressed section one man page files located in their
usual location. The result of this command is a list of files containing either the string
“regex” or “regular expression”. As we can see, regular expressions show up in a lot of
programs.

There is one feature found in basic regular expressions that we did not cover. Called
back references, this feature will be discussed in the next chapter.

Further Reading

There are many online resources for learning regular expressions, including various
tutorials and cheat sheets.

In addition, the Wikipedia has good articles on the following background topics:

e POSIX: http://en.wikipedia.org/wiki/Posix
e ASCII: http://en.wikipedia.org/wiki/Ascii

267

http://en.wikipedia.org/wiki/Ascii
http://en.wikipedia.org/wiki/Posix

21 — Text Processing

21 - Text Processing

All Unix-like operating systems rely heavily on text files for several types of data
storage. So it makes sense that there are many tools for manipulating text. In this
chapter, we will look at programs that are used to “slice and dice” text. In the next
chapter, we will look at more text processing, focusing on programs that are used to
format text for printing and other kinds of human consumption.

This chapter will revisit some old friends and introduce us to some new ones:

cat — Concatenate files and print on the standard output
sort — Sort lines of text files

uniq — Report or omit repeated lines

cut — Remove sections from each line of files

paste — Merge lines of files

join —Join lines of two files on a common field
comm — Compare two sorted files line by line

diff — Compare files line by line

patch — Apply a diff file to an original

tr — Translate or delete characters

sed — Stream editor for filtering and transforming text

aspell — Interactive spell checker

Applications Of Text

So far, we have learned a couple of text editors (nano and vim), looked a bunch of
configuration files, and have witnessed the output of dozens of commands, all in text.
But what else is text used for? For many things, it turns out.

268

Applications Of Text

Documents

Many people write documents using plain text formats. While it is easy to see how a
small text file could be useful for keeping simple notes, it is also possible to write large
documents in text format, as well. One popular approach is to write a large document in
a text format and then use a markup language to describe the formatting of the finished
document. Many scientific papers are written using this method, as Unix-based text
processing systems were among the first systems that supported the advanced
typographical layout needed by writers in technical disciplines.

Web Pages

The world’s most popular type of electronic document is probably the web page. Web
pages are text documents that use either HTML (Hypertext Markup Language) or XML
(Extensible Markup Language) as markup languages to describe the document’s visual
format.

Emaill

Email is an intrinsically text-based medium. Even non-text attachments are converted
into a text representation for transmission. We can see this for ourselves by downloading
an email message and then viewing it in 1ess. We will see that the message begins with
a header that describes the source of the message and the processing it received during its
journey, followed by the body of the message with its content.

Printer Output

On Unix-like systems, output destined for a printer is sent as plain text or, if the page
contains graphics, is converted into a text format page description language known as
PostScript, which is then sent to a program that generates the graphic dots to be printed.

Program Source Code

Many of the command line programs found on Unix-like systems were created to support
system administration and software development, and text processing programs are no
exception. Many of them are designed to solve software development problems. The
reason text processing is important to software developers is that all software starts out as
text. Source code, the part of the program the programmer actually writes, is always in
text format.

Revisiting Some Old Friends

Back in Chapter 7 (Redirection), we learned about some commands that are able to

269

21 — Text Processing

accept standard input in addition to command line arguments. We only touched on them
briefly then, but now we will take a closer look at how they can be used to perform text
processing.

cat

The cat program has a number of interesting options. Many of them are used to help
better visualize text content. One example is the -A option, which is used to display non-
printing characters in the text. There are times when we want to know if control
characters are embedded in our otherwise visible text. The most common of these are tab
characters (as opposed to spaces) and carriage returns, often present as end-of-line
characters in MS-DOS style text files. Another common situation is a file containing
lines of text with trailing spaces.

Let’s create a test file using cat as a primitive word processor. To do this, we’ll just
enter the command cat (along with specifying a file for redirected output) and type our
text, followed by Enter to properly end the line, then Ctrl-d, to indicate to cat that
we have reached end-of-file. In this example, we enter a leading tab character and follow
the line with some trailing spaces:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jumped over the lazy dog.
[me@linuxbox ~]$

Next, we will use cat with the - A option to display the text:

[me@linuxbox ~]$ cat -A foo.txt
ANIThe quick brown fox jumped over the lazy dog. $
[me@linuxbox ~]$%$

As we can see in the results, the tab character in our text is represented by AI. This is a
common notation that means “Control-I” which, as it turns out, is the same as a tab
character. We also see that a $ appears at the true end of the line, indicating that our text
contains trailing spaces.

270

Revisiting Some Old Friends

MS-DOS Text Vs. Unix Text

One of the reasons you may want to use cat to look for non-printing characters
in text is to spot hidden carriage returns. Where do hidden carriage returns come
from? DOS and Windows! Unix and DOS don’t define the end of a line the
same way in text files. Unix ends a line with a linefeed character (ASCII 10)
while MS-DOS and its derivatives use the sequence carriage return (ASCII 13)
and linefeed to terminate each line of text.

There are a several ways to convert files from DOS to Unix format. On many
Linux systems, there are programs called dos2unix and unix2dos, which can
convert text files to and from DOS format. However, if you don’t have
dos2unix on your system, don’t worry. The process of converting text from
DOS to Unix format is very simple; it simply involves the removal of the
offending carriage returns. That is easily accomplished by a couple of the
programs discussed later in this chapter.

cat also has options that are used to modify text. The two most prominent are -n,
which numbers lines, and - S, which suppresses the output of multiple blank lines. We
can demonstrate thusly:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox

jumped over the lazy dog.
[me@linuxbox ~]$ cat -ns foo.txt

1 The quick brown fox
2
3 jumped over the lazy dog.

[me@linuxbox ~1%

In this example, we create a new version of our f0o0. txt test file, which contains two
lines of text separated by two blank lines. After processing by cat with the -ns options,
the extra blank line is removed and the remaining lines are numbered. While this is not
much of a process to perform on text, it is a process.

sort

The sort program sorts the contents of standard input, or one or more files specified on
the command line, and sends the results to standard output. Using the same technique

271

21 — Text Processing

that we used with cat, we can demonstrate processing of standard input directly from
the keyboard:

[me@linuxbox ~]$ sort > foo.txt
c

b

a

[me@linuxbox ~]$ cat foo.txt

a

b

c

After entering the command, we type the letters “c”, “b”, and “a”, followed once again by
Ctrl-d to indicate end-of-file. We then view the resulting file and see that the lines

now appear in sorted order.

Since sort can accept multiple files on the command line as arguments, it is possible to
merge multiple files into a single sorted whole. For example, if we had three text files
and wanted to combine them into a single sorted file, we could do something like this:

sort filel.txt file2.txt file3.txt > final_sorted_list.txt

sort has several interesting options. Here is a partial list:

Table 21-1: Common sort Options

Option Long Option Description

-b --ignore-leading-blanks By default, sorting is performed
on the entire line, starting with the
first character in the line. This
option causes sort to ignore
leading spaces in lines and
calculates sorting based on the first
non-whitespace character on the

line.
-f --ignore-case Makes sorting case insensitive.
-n --numeric-sort Performs sorting based on the

numeric evaluation of a string.
Using this option allows sorting to
be performed on numeric values

272

Revisiting Some Old Friends

--reverse

--key=field1[, field2]

--merge

--output=file

--field-separator=char

rather than alphabetic values.

Sort in reverse order. Results are
in descending rather than
ascending order.

Sort based on a key field located
from field1 to field2 rather than the
entire line. See discussion below.

Treat each each argument as the
name of a presorted file. Merge
multiple files into a single sorted
result without performing any
additional sorting.

Send sorted output to file rather
than standard output.

Define the field separator
character. By default fields are
separated by spaces or tabs.

Although most of the options above are pretty self-explanatory, some are not. First, let’s
look at the -n option, used for numeric sorting. With this option, it is possible to sort
values based on numeric values. We can demonstrate this by sorting the results of the du
command to determine the largest users of disk space. Normally, the du command lists
the results of a summary in pathname order:

252
96

8

196
344

8
12488
8
21440
48

[me@linuxbox ~]$ du -s /usr/share/* | head

/usr/share/aclocal
/usr/share/acpi-support
/usr/share/adduser
/usr/share/alacarte
/usr/share/alsa
/usr/share/alsa-base
/usr/share/anthy
/usr/share/apmd
/usr/share/app-install

/usr/share/application-registry

In this example, we pipe the results into head to limit the results to the first ten lines.
We can produce a numerically sorted list to show the ten largest consumers of space this

way:

273

21 — Text Processing

[me@linuxbox ~]$ du -s /usr/share/* | sort -nr | head
509940 /usr/share/locale-langpack
242660 /usr/share/doc

197560 /usr/share/fonts

179144 /usr/share/gnome

146764 /usr/share/myspell

144304 /usr/share/gimp

135880 /usr/share/dict

76508 /usr/share/icons

68072 /usr/share/apps

62844 /usr/share/foomatic

By using the -nr options, we produce a reverse numerical sort, with the largest values
appearing first in the results. This sort works because the numerical values occur at the
beginning of each line. But what if we want to sort a list based on some value found
within the line? For example, the results of an 1s -1:

[me@linuxbox ~]$ 1s -1 /usr/bin | head

total 152948

-rwxr-xr-x 1 root root 34824 2008-04-04 02:42 [
-rwxr-xr-x 1 root root 101556 2007-11-27 06:08 a2p
-rwxr-xr-x 1 root root 13036 2008-02-27 08:22 aconnect
-rwxr-xr-x 1 root root 10552 2007-08-15 10:34 acpi
-rwxr-xr-x 1 root root 3800 2008-04-14 03:51 acpi_fakekey
-rwxr-xr-x 1 root root 7536 2008-04-19 00:19 acpi_listen
-rwxr-xr-x 1 root root 3576 2008-04-29 07:57 addpart
-rwxr-xr-x 1 root root 20808 2008-01-03 18:02 addr2line
-rwxr-xr-x 1 root root 489704 2008-10-09 17:02 adept_batch

Ignoring, for the moment, that 1S can sort its results by size, we could use sort to sort
this list by file size, as well:

[me@linuxbox ~]$ 1s -1 /usr/bin | sort -nr -k 5 | head
-rwxr-xr-x 1 root root 8234216 2008-04-07 17:42 inkscape
-rwxr-xr-x 1 root root 8222692 2008-04-07 17:42 inkview
-rwxr-xr-x 1 root root 3746508 2008-03-07 23:45 gimp-2.4
-rwxr-xr-x 1 root root 3654020 2008-08-26 16:16 quanta
-rwxr-xr-x 1 root root 2928760 2008-09-10 14:31 gdbtui
-rwxr-xr-x 1 root root 2928756 2008-09-10 14:31 gdb
-rwxr-xr-x 1 root root 2602236 2008-10-10 12:56 net
-rwxr-xr-x 1 root root 2304684 2008-10-10 12:56 rpcclient
-rwxr-xr-x 1 root root 2241832 2008-04-04 05:56 aptitude
-rwxr-xr-x 1 root root 2202476 2008-10-10 12:56 smbcacls

274

Revisiting Some Old Friends

Many uses of sort involve the processing of tabular data, such as the results of the 1s
command above. If we apply database terminology to the table above, we would say that
each row is a record and that each record consists of multiple fields, such as the file
attributes, link count, filename, file size and so on. sort is able to process individual
fields. In database terms, we are able to specify one or more key fields to use as sort keys.
In the example above, we specify the n and r options to perform a reverse numerical sort
and specify -k 5 to make sort use the fifth field as the key for sorting.

The k option is very interesting and has many features, but first we need to talk about
how sort defines fields. Let’s consider a very simple text file consisting of a single line
containing the author’s name:

William Shotts

By default, sort sees this line as having two fields. The first field contains the
characters:

“William”
and the second field contains the characters:
“ Shotts”

meaning that whitespace characters (spaces and tabs) are used as delimiters between
fields and that the delimiters are included in the field when sorting is performed.

Looking again at a line from our 1S output, we can see that a line contains eight fields
and that the fifth field is the file size:

-rwxr-xr-x 1 root root 8234216 2008-04-07 17:42 inkscape

For our next series of experiments, let’s consider the following file containing the history
of three popular Linux distributions released from 2006 to 2008. Each line in the file has
three fields: the distribution name, version number, and date of release in
MM/DD/YYYY format:

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
SUSE 10.3 10/04/2007

275

21 — Text Processing

Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/20607
Ubuntu 7.04 04/19/2007
SUSE 10.1 05/11/2006
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Using a text editor (perhaps vim), we’ll enter this data and name the resulting file
distros. txt.

Next, we’ll try sorting the file and observe the results:

[me@linuxbox ~]$ sort distros.txt
Fedora 10 11/25/2008
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/20607
Fedora 8 11/08/2007
Fedora 9 05/13/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Well, it mostly worked. The problem occurs in the sorting of the Fedora version
numbers. Since a “1” comes before a “5” in the character set, version “10” ends up at the
top while version “9” falls to the bottom.

To fix this problem we are going to have to sort on multiple keys. We want to perform an
alphabetic sort on the first field and then a numeric sort on the third field. sort allows
multiple instances of the - K option so that multiple sort keys can be specified. In fact, a
key may include a range of fields. If no range is specified (as has been the case with our
previous examples), sort uses a key that begins with the specified field and extends to
the end of the line. Here is the syntax for our multi-key sort:

276

Revisiting Some Old Friends

[me@linuxbox ~]$ sort --key=1,1 --key=2n distros.txt
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
Fedora 10 11/25/2008
SUSE 10.1 05/11/20606
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/20607
Ubuntu 7.10 16/18/20607
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Though we used the long form of the option for clarity, -k 1,1 -k 2n would be
exactly equivalent. In the first instance of the key option, we specified a range of fields
to include in the first key. Since we wanted to limit the sort to just the first field, we
specified 1,1 which means “start at field one and end at field one.” In the second
instance, we specified 2n, which means that field two is the sort key and that the sort
should be numeric. An option letter may be included at the end of a key specifier to
indicate the type of sort to be performed. These option letters are the same as the global
options for the sort program: b (ignore leading blanks), n (numeric sort), r (reverse
sort), and so on.

The third field in our list contains a date in an inconvenient format for sorting. On
computers, dates are usually formatted in YYYY-MM-DD order to make chronological
sorting easy, but ours are in the American format of MM/DD/YYYY. How can we sort
this list in chronological order?

Fortunately, sort provides a way. The key option allows specification of offsets within
fields, so we can define keys within fields:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt
Fedora 10 11/25/2008

Ubuntu 8.10 10/30/2008
SUSE 11.0 06/19/2008
Fedora 9 05/13/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 7.10 10/18/20607
SUSE 10.3 10/04/2007

277

21 — Text Processing

Fedora 7 05/31/2007
Ubuntu 7.04 04/19/20607
SUSE 10.2 12/07/2006
Ubuntu 6.10 10/26/2006
Fedora 6 10/24/2006
Ubuntu 6.06 06/01/2006
SUSE 10.1 05/11/2006
Fedora 5 03/20/2006

By specifying -k 3.7 we instruct SOrt to use a sort key that begins at the seventh
character within the third field, which corresponds to the start of the year. Likewise, we
specify -k 3.1 and -k 3.4 to isolate the month and day portions of the date. We also
add the n and r options to achieve a reverse numeric sort. The b option is included to
suppress the leading spaces (whose numbers vary from line to line, thereby affecting the
outcome of the sort) in the date field.

Some files don’t use tabs and spaces as field delimiters; for example, the /etc/passwd
file:

[me@linuxbox ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:1p:/var/spool/1pd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

The fields in this file are delimited with colons (:), so how would we sort this file using a
key field? sort provides the -t option to define the field separator character. To sort
the passwd file on the seventh field (the account’s default shell), we could do this:

[me@linuxbox ~]$ sort -t ':' -k 7 /etc/passwd | head
me:x:1001:1001:Myself,,, : /home/me:/bin/bash
root:x:0:0:root:/root:/bin/bash
dhcp:x:101:102::/nonexistent:/bin/false

gdm:x:106:114:Gnome Display Manager:/var/lib/gdm:/bin/false
hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false
klog:x:103:104::/home/klog:/bin/false

messagebus:x:108:119: :/var/run/dbus:/bin/false

278

Revisiting Some Old Friends

polkituser:x:110:122:PolicyKit,,, :/var/run/PolicyKit:/bin/false
pulse:x:107:116:PulseAudio daemon,,,:/var/run/pulse:/bin/false

By specifying the colon character as the field separator, we can sort on the seventh field.

uniq
Compared to sort, the uniq program is a lightweight. uniq performs a seemingly

trivial task. When given a sorted file (including standard input), it removes any duplicate
lines and sends the results to standard output. It is often used in conjunction with sort

to clean the output of duplicates.

Tip: While uniq is a traditional Unix tool often used with sort, the GNU version
of sort supports a - u option, which removes duplicates from the sorted output.

Let’s make a text file to try this out:

[me@linuxbox ~]$ cat > foo.txt

OT OHOT D

Remember to type Ctrl-d to terminate standard input. Now, if we run uniqg on our
text file:

[me@linuxbox ~]$ uniq foo.txt

OT 90T

the results are no different from our original file; the duplicates were not removed. For
unigq to actually do its job, the input must be sorted first:

279

21 — Text Processing

[me@linuxbox ~]$ sort foo.txt | uniq
a
b
c

This is because uniq only removes duplicate lines which are adjacent to each other.

uniq has several options. Here are the common ones:

Table 21-2: Common uniq Options

Option Description

-C Output a list of duplicate lines preceded by the number of time